Yoon Chang Won, Kusari Upal, Sneddon Larry G
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
Inorg Chem. 2008 Oct 20;47(20):9216-27. doi: 10.1021/ic8010019. Epub 2008 Sep 19.
Quantum mechanical computational studies of possible mechanistic pathways for B10H13(-) dehydrogenative alkyne-insertion and olefin-hydroboration reactions demonstrate that, depending on the reactant and reaction conditions, B10H13(-) can function as either an electrophile or nucleophile. For reactions with nucleophilic alkynes, such as propyne, the calculations indicate that at the temperatures (approximately 110-120 degrees C) required for these reactions, the ground-state B10H13(-) (1) structure can rearrange to an electrophilic-type cage structure 3 having a LUMO orbital strongly localized on the B6 cage-boron. Alkyne binding at this site followed by subsequent steps involving the formation of additional boron-carbon bonds, hydrogen elimination, protonation, and further hydrogen elimination then lead in a straightforward manner to the experimentally observed ortho-carborane products resulting from alkyne insertion into the decaborane framework. A similar mechanistic sequence was identified for the reaction of propyne with 6-R-B10H12(-) leading to the formation of 1-Me-3-R-1,2-C2B10H11 carboranes. On the other hand, both B10H13(-) and 4,6-C2B7H12(-) have previously been shown to react at much lower temperatures with strongly polarized alkynes, and the DFT and IRC calculations support an alternative mechanism involving initial nucleophilic attack by these polyborane anions at the positive terminal acetylenic carbon to produce terminally substituted olefinic anions. In the case of the B10H13(-) reaction, subsequent cyclization steps were identified that provide a pathway to the experimentally observed arachno-8-(NC)-7,8-C2B10H14(-) carborane. The computational study of B10H13(-) propylene hydroboration also supports a mechanistic pathway involving a cage rearrangement to the electrophilic 3 structure. Olefin-binding at the LUMO orbital localized on the B6 cage-boron, followed by addition of the B6-H group across the olefinic double bond and protonation, then leads to the experimentally observed 6-R-B10H13 products.
对B10H13(-)脱氢炔烃插入和烯烃硼氢化反应可能的机理途径进行的量子力学计算研究表明,根据反应物和反应条件,B10H13(-)既可以作为亲电试剂,也可以作为亲核试剂。对于与亲核炔烃(如丙炔)的反应,计算表明,在这些反应所需的温度(约110 - 120摄氏度)下,基态B10H13(-) (1)结构可以重排为一种亲电型笼状结构3,其最低未占分子轨道(LUMO)强烈定域在B6笼硼上。炔烃在该位点结合,随后经过涉及形成额外硼 - 碳键、氢消除、质子化以及进一步氢消除的后续步骤,然后直接导致实验观察到的由炔烃插入癸硼烷骨架而产生的邻碳硼烷产物。对于丙炔与6 - R - B10H12(-)反应生成1 - Me - 3 - R - 1,2 - C2B10H11碳硼烷,也确定了类似的机理序列。另一方面,先前已表明B10H13(-)和4,6 - C2B7H12(-)在低得多的温度下与强极化炔烃反应,密度泛函理论(DFT)和内禀反应坐标(IRC)计算支持一种替代机理,该机理涉及这些多硼烷阴离子首先在炔烃正端碳上进行亲核进攻,生成末端取代的烯基阴离子。在B10H13(-)反应的情况下,确定了后续的环化步骤,这些步骤为实验观察到的蛛网型8 - (NC) - 7,8 - C2B10H14(-)碳硼烷提供了一条途径。对B10H13(-)丙烯硼氢化反应的计算研究也支持一种涉及笼状结构重排为亲电3结构的机理途径。烯烃在定域于B6笼硼上的LUMO轨道处结合,随后B6 - H基团加成到烯烃双键上并质子化,然后生成实验观察到的6 - R - B10H13产物。