Suppr超能文献

对来自大肠杆菌、结核分枝杆菌和嗜热栖热菌的喹啉酸合酶的表征表明,[4Fe-4S]簇是这类酶中常见的辅因子。

Characterization of quinolinate synthases from Escherichia coli, Mycobacterium tuberculosis, and Pyrococcus horikoshii indicates that [4Fe-4S] clusters are common cofactors throughout this class of enzymes.

作者信息

Saunders Allison H, Griffiths Amy E, Lee Kyung-Hoon, Cicchillo Robert M, Tu Loretta, Stromberg Jeffrey A, Krebs Carsten, Booker Squire J

机构信息

Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biochemistry. 2008 Oct 14;47(41):10999-1012. doi: 10.1021/bi801268f. Epub 2008 Sep 20.

Abstract

Quinolinate synthase (NadA) catalyzes a unique condensation reaction between iminoaspartate and dihydroxyacetone phosphate, affording quinolinic acid, a central intermediate in the biosynthesis of nicotinamide adenine dinucleotide (NAD). Iminoaspartate is generated via the action of l-aspartate oxidase (NadB), which catalyzes the first step in the biosynthesis of NAD in most prokaryotes. NadA from Escherichia coli was hypothesized to contain an iron-sulfur cluster as early as 1991, because of its observed labile activity, especially in the presence of hyperbaric oxygen, and because its primary structure contained a CXXCXXC motif, which is commonly found in the [4Fe-4S] ferredoxin class of iron-sulfur (Fe/S) proteins. Indeed, using analytical methods in concert with Mossbauer and electron paramagnetic resonance spectroscopies, the protein was later shown to harbor a [4Fe-4S] cluster. Recently, the X-ray structure of NadA from Pyrococcus horikoshii was solved to 2.0 A resolution [Sakuraba, H., Tsuge, H.,Yoneda, K., Katunuma, N., and Ohshima, T. (2005) J. Biol. Chem. 280, 26645-26648]. This protein does not contain a CXXCXXC motif, and no Fe/S cluster was observed in the structure or even mentioned in the report. Moreover, rates of quinolinic acid production were reported to be 2.2 micromol min (-1) mg (-1), significantly greater than that of E. coli NadA containing an Fe/S cluster (0.10 micromol min (-1) mg (-1)), suggesting that the [4Fe-4S] cluster of E. coli NadA may not be necessary for catalysis. In the study described herein, nadA genes from both Mycobacterium tuberculosis and Pyrococcus horikoshii were cloned, and their protein products shown to contain [4Fe-4S] clusters that are absolutely required for activity despite the absence of a CXXCXXC motif in their primary structures. Moreover, E. coli NadA, which contains nine cysteine residues, is shown to require only three for turnover (C113, C200, and C297), of which only C297 resides in the CXXCXXC motif. These results are consistent with a bioinformatics analysis of NadA sequences, which indicates that three cysteines are strictly conserved across all species. This study concludes that all currently annotated quinolinate synthases harbor a [4Fe-4S] cluster, that the crystal structure reported by Sakuraba et al. does not accurately represent the active site of the protein, and that the "activity" reported does not correspond to quinolinate formation.

摘要

喹啉酸合酶(NadA)催化亚氨基天冬氨酸与磷酸二羟丙酮之间独特的缩合反应,生成喹啉酸,它是烟酰胺腺嘌呤二核苷酸(NAD)生物合成的核心中间体。亚氨基天冬氨酸是通过L - 天冬氨酸氧化酶(NadB)的作用产生的,NadB催化大多数原核生物中NAD生物合成的第一步。早在1991年,就有人推测大肠杆菌的NadA含有铁硫簇,因为观察到它的活性不稳定,尤其是在高压氧存在的情况下,而且它的一级结构包含一个CXXCXXC基序,这在铁硫(Fe/S)蛋白的[4Fe - 4S]铁氧还蛋白类中很常见。事实上,通过结合穆斯堡尔光谱和电子顺磁共振光谱的分析方法,后来证明该蛋白含有一个[4Fe - 4S]簇。最近,嗜热栖热菌NadA的X射线结构解析到了2.0 Å的分辨率[樱井原博,津下浩,米田佳典,葛沼努,大岛智(2005年)《生物化学杂志》280卷,26645 - 26648页]。该蛋白不包含CXXCXXC基序,在结构中未观察到铁硫簇,甚至在报告中也未提及。此外,据报道喹啉酸的生成速率为2.2 μmol min⁻¹ mg⁻¹,显著高于含有铁硫簇的大肠杆菌NadA(0.10 μmol min⁻¹ mg⁻¹),这表明大肠杆菌NadA的[4Fe - 4S]簇可能不是催化所必需的。在本文所述的研究中,克隆了结核分枝杆菌和嗜热栖热菌的nadA基因,其蛋白产物显示含有[4Fe - 4S]簇,尽管它们的一级结构中没有CXXCXXC基序,但这些簇是活性所绝对必需的。此外,含有9个半胱氨酸残基的大肠杆菌NadA显示,其周转仅需要3个半胱氨酸(C113、C200和C297),其中只有C297位于CXXCXXC基序中。这些结果与对NadA序列的生物信息学分析一致,该分析表明所有物种中3个半胱氨酸是严格保守的。本研究得出结论,所有目前注释的喹啉酸合酶都含有一个[4Fe - 4S]簇,樱井原博等人报道的晶体结构不能准确代表该蛋白的活性位点,且所报道的“活性”与喹啉酸的形成不对应。

相似文献

3
Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster.
J Am Chem Soc. 2005 May 25;127(20):7310-1. doi: 10.1021/ja051369x.
5
Structure of Quinolinate Synthase from Pyrococcus horikoshii in the Presence of Its Product, Quinolinic Acid.
J Am Chem Soc. 2016 Jun 15;138(23):7224-7. doi: 10.1021/jacs.6b02708. Epub 2016 Jun 2.
6
Active-site models for complexes of quinolinate synthase with substrates and intermediates.
Acta Crystallogr D Biol Crystallogr. 2013 Sep;69(Pt 9):1685-96. doi: 10.1107/S090744491301247X. Epub 2013 Aug 15.
7
Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis.
FEBS Lett. 2005 Jul 4;579(17):3737-43. doi: 10.1016/j.febslet.2005.05.065.
8
Regulation of the activity of Escherichia coli quinolinate synthase by reversible disulfide-bond formation.
Biochemistry. 2008 Aug 19;47(33):8467-9. doi: 10.1021/bi801135y. Epub 2008 Jul 24.
9
The [4Fe-4S] cluster of quinolinate synthase from Escherichia coli: investigation of cluster ligands.
FEBS Lett. 2008 Aug 20;582(19):2937-44. doi: 10.1016/j.febslet.2008.07.032. Epub 2008 Jul 30.
10
Characterization of L-aspartate oxidase and quinolinate synthase from Bacillus subtilis.
FEBS J. 2008 Oct;275(20):5090-107. doi: 10.1111/j.1742-4658.2008.06641.x.

引用本文的文献

1
Comparative proteomic investigation unravels the pathobiology of Mycobacterium fortuitum biofilm.
Appl Microbiol Biotechnol. 2023 Oct;107(19):6029-6046. doi: 10.1007/s00253-023-12705-y. Epub 2023 Aug 5.
4
Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens.
Proc Natl Acad Sci U S A. 2020 Aug 18;117(33):19720-19730. doi: 10.1073/pnas.2005327117. Epub 2020 Jul 30.
5
Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives.
Cells. 2020 Jun 26;9(6):1564. doi: 10.3390/cells9061564.
7
The kynurenine pathway and the brain: Challenges, controversies and promises.
Neuropharmacology. 2017 Jan;112(Pt B):237-247. doi: 10.1016/j.neuropharm.2016.08.003. Epub 2016 Aug 7.
8
Unanticipated coordination of tris buffer to the Radical SAM cluster of the RimO methylthiotransferase.
J Biol Inorg Chem. 2016 Jul;21(4):549-57. doi: 10.1007/s00775-016-1365-8. Epub 2016 Jun 3.
10
Active-site models for complexes of quinolinate synthase with substrates and intermediates.
Acta Crystallogr D Biol Crystallogr. 2013 Sep;69(Pt 9):1685-96. doi: 10.1107/S090744491301247X. Epub 2013 Aug 15.

本文引用的文献

1
Regulation of the activity of Escherichia coli quinolinate synthase by reversible disulfide-bond formation.
Biochemistry. 2008 Aug 19;47(33):8467-9. doi: 10.1021/bi801135y. Epub 2008 Jul 24.
3
Cofactor biosynthesis--still yielding fascinating new biological chemistry.
Curr Opin Chem Biol. 2008 Apr;12(2):118-25. doi: 10.1016/j.cbpa.2008.02.006. Epub 2008 Apr 2.
4
Characterization of Arabidopsis thaliana SufE2 and SufE3: functions in chloroplast iron-sulfur cluster assembly and Nad synthesis.
J Biol Chem. 2007 Jun 22;282(25):18254-18264. doi: 10.1074/jbc.M701428200. Epub 2007 Apr 23.
5
The power to reduce: pyridine nucleotides--small molecules with a multitude of functions.
Biochem J. 2007 Mar 1;402(2):205-18. doi: 10.1042/BJ20061638.
6
NAD+ metabolism in health and disease.
Trends Biochem Sci. 2007 Jan;32(1):12-9. doi: 10.1016/j.tibs.2006.11.006. Epub 2006 Dec 11.
7
The Universal Protein Resource (UniProt).
Nucleic Acids Res. 2007 Jan;35(Database issue):D193-7. doi: 10.1093/nar/gkl929. Epub 2006 Nov 16.
8
Trafficking in persulfides: delivering sulfur in biosynthetic pathways.
Nat Chem Biol. 2006 Apr;2(4):185-94. doi: 10.1038/nchembio779.
9
Quinolinate synthetase, an iron-sulfur enzyme in NAD biosynthesis.
FEBS Lett. 2005 Jul 4;579(17):3737-43. doi: 10.1016/j.febslet.2005.05.065.
10
Crystal structure of the NAD biosynthetic enzyme quinolinate synthase.
J Biol Chem. 2005 Jul 22;280(29):26645-8. doi: 10.1074/jbc.C500192200. Epub 2005 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验