Suppr超能文献

以计算机断层扫描血管造影为模型,定义心血管成像的最佳研究设计。

Defining optimal research study design for cardiovascular imaging using computed tomography angiography as a model.

作者信息

Shah Bimal R, Patel Manesh R, Peterson Eric D, Douglas Pamela S

机构信息

Duke Clinical Research Institute and Division of Cardiovascular Medicine, Duke University Medical Center, Durham, North Carolina, USA.

出版信息

Am J Cardiol. 2008 Oct 1;102(7):943-8. doi: 10.1016/j.amjcard.2008.05.037. Epub 2008 Jul 17.

Abstract

Patients, physicians, and payers are facing a significant increase in cardiovascular (CV) imaging use, resulting in skyrocketing societal costs, without clear improvement in patient outcomes. The need for studies evaluating the effects of CV imaging that assess appropriate end points is critical to address continued concerns over the lack of well-designed clinical studies. Thus, the investigators propose a framework, using computed tomographic angiography as a model, that should be considered in the optimal design of future imaging research and would potentially provide payers with data to make appropriate reimbursement decisions. The inclusion of risk stratification, randomization, multiple-site participation, and multigeography site enrollment are key elements in the construction of such studies. Meaningful end points with regard to operating characteristics, downstream testing, CV event rates, outcomes, and costs are essential to appropriately evaluate any new imaging technology. Only once better level evidence is formed to support CV imaging can the central issues of quality and appropriateness of CV imaging truly be evaluated. If the CV community does not embrace this type of scientific evaluation of CV imaging modalities and fails to adequately identify the value in these techniques, it may ultimately lose the ability to use them to provide optimal care to its patients.

摘要

患者、医生和支付方面临着心血管(CV)成像使用量的显著增加,这导致社会成本飙升,而患者预后却没有明显改善。开展评估CV成像效果并采用恰当终点指标的研究,对于解决人们对缺乏精心设计的临床研究的持续担忧至关重要。因此,研究人员提出了一个以计算机断层血管造影为模型的框架,该框架应在未来成像研究的优化设计中予以考虑,并有可能为支付方提供数据,以便做出恰当的报销决策。纳入风险分层、随机分组、多中心参与和多地区研究点入组是此类研究构建的关键要素。关于操作特征、下游检测、CV事件发生率、预后和成本的有意义的终点指标,对于恰当评估任何新的成像技术至关重要。只有形成更好水平的证据来支持CV成像,才能真正评估CV成像质量和适用性的核心问题。如果CV领域不接受对CV成像模式的这种科学评估,且未能充分识别这些技术的价值,那么最终可能会失去利用它们为患者提供最佳治疗的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验