Miller Paul S, Topf Maya, Smart Trevor G
Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
Nat Struct Mol Biol. 2008 Oct;15(10):1084-93. doi: 10.1038/nsmb.1492. Epub 2008 Sep 21.
Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn(2+)-inhibition site. Mutating these hydrophobic residues disrupted Zn(2+) inhibition, generating novel Zn(2+)-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn(2+)-inhibition site, and to D84 and D86, on a neighboring beta3 strand, forming a Zn(2+)-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.
半胱氨酸环配体门控离子通道介导整个中枢神经系统的快速神经传递。它们具有激动剂识别位点和变构位点,调节剂可在这些位点调节离子通道功能。利用对士的宁敏感的甘氨酸受体,我们确定了一个疏水残基支架,该支架能够使甘氨酸激动剂结合环A和D与锌(2+)抑制位点之间进行变构通讯。突变这些疏水残基会破坏锌(2+)抑制作用,产生新型的锌(2+)激活受体和自发通道活性。同源建模和电生理学表明,这些现象是由锌(2+)抑制位点“-”环面上的三个残基以及相邻β3链上的D84和D86的破坏引起的,从而形成了锌(2+)激活位点。我们为半胱氨酸环受体的激活提供了一个新观点,即在激动剂结合后,疏水核心和界面环以协同方式重新组织以诱导下游门控。