Suppr超能文献

一种用于脊柱侧弯患者立体数字躯干图像配准的新解决方案。

A novel solution for registration of stereo digital torso images of scoliosis patients.

作者信息

Kumar A, Durdle N, Raso J

机构信息

Dept of Electrical & Computer Eng, University of Alberta, Edmonton, AB, Canada.

出版信息

Stud Health Technol Inform. 2008;140:161-5.

Abstract

This paper presents a procedure for registration of a pair of stereo digital images giving an improvement in accuracy and speed over existing methods. It does so by a novel approach combining color based image segmentation and differential geometry. It involves three stages: image segmentation, adaptive local pixel matching, and deferential geometry in a tree weighted belief propagation procedure. The registration was compared to 2 existing registration procedures, segment-based adaptive belief propagation (adaptive BP) and color-weighted hierarchical belief propagation (hierarchical BP). A 3D scan of a mannequin was obtained and errors in reconstruction were measured for each of the 360 cross sections of the mannequin. The proposed procedure outperforms existing methods, particularly for high curvature regions and significantly large cross sections. Its accuracy of reconstruction ranged from 85-100% compared to 75-100% for other existing methods. It was 35% to 40% faster. This work provides a solution to the registration problem and is an important step in developing a cost effective technique for measuring torso shape and symmetry of scoliosis patients using stereo digital cameras.

摘要

本文提出了一种用于一对立体数字图像配准的方法,与现有方法相比,该方法在精度和速度上都有所提高。它通过一种结合基于颜色的图像分割和微分几何的新颖方法来实现这一点。该方法包括三个阶段:图像分割、自适应局部像素匹配以及树加权置信传播过程中的微分几何。将该配准方法与两种现有的配准方法进行了比较,即基于分割的自适应置信传播(自适应BP)和颜色加权分层置信传播(分层BP)。获取了一个人体模型的三维扫描数据,并对人体模型的360个横截面中的每一个测量了重建误差。所提出的方法优于现有方法,特别是对于高曲率区域和明显较大的横截面。其重建精度范围为85% - 100%,而其他现有方法的精度范围为75% - 100%。该方法速度快35%至40%。这项工作为配准问题提供了解决方案,是开发一种使用立体数字相机测量脊柱侧弯患者躯干形状和对称性的经济有效技术的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验