Haeckel Akvile, Ahuja Rashmi, Gundelfinger Eckart D, Qualmann Britta, Kessels Michael M
Institute for Biochemistry I, Friedrich Schiller University Jena, 07743 Jena, Germany.
J Neurosci. 2008 Oct 1;28(40):10031-44. doi: 10.1523/JNEUROSCI.0336-08.2008.
Polymerization and organization of actin into complex superstructures, including those found in dendritic spines, is indispensable for structure and function of neuronal networks. Here we show that the filamentous actin (F-actin)-binding protein 1 (Abp1), which controls Arp2/3 complex-mediated actin nucleation and binds to postsynaptic scaffold proteins of the ProSAP (proline-rich synapse-associated protein 1)/Shank family, has a profound impact on synaptic organization. Overexpression of the two Abp1 F-actin-binding domains increases the length of thin, filopodia-like and mushroom-type spines but dramatically reduces mushroom spine density, attributable to lack of the Abp1 Src homology 3 (SH3) domain. In contrast, overexpression of full-length Abp1 increases mushroom spine and synapse density. The SH3 domain alone has a dominant-negative effect on mushroom spines, whereas the density of filopodia and thin, immature spines remains unchanged. This suggests that both actin-binding and SH3 domain interactions are crucial for the role of Abp1 in spine maturation. Indeed, Abp1 knockdown significantly reduces mushroom spine and synapse density. Abp1 hereby works in close conjunction with ProSAP1/Shank2 and ProSAP2/Shank3, because Abp1 effects were suppressed by ProSAP2 RNA interference and the ProSAP/Shank-induced increase of spine head width is further promoted by Abp1 cooverexpression and reduced on Abp1 knockdown. Also, interfering with the formation of functional Abp1-ProSAP protein complexes prevents ProSAP-mediated spine head extension. Spine head extension furthermore depends on local Arp2/3 complex-mediated actin polymerization, which is controlled by Abp1 via the Arp2/3 complex activator N-WASP (neural Wiskott-Aldrich syndrome protein). Abp1 thus plays an important role in the formation and morphology control of synapses by making a required functional connection between postsynaptic density components and postsynaptic actin dynamics.
肌动蛋白聚合成复杂的超结构,包括树突棘中的超结构,对于神经网络的结构和功能而言必不可少。我们在此表明,丝状肌动蛋白(F-肌动蛋白)结合蛋白1(Abp1)对突触组织有着深远影响,它控制Arp2/3复合物介导的肌动蛋白成核,并与ProSAP(富含脯氨酸的突触相关蛋白1)/Shank家族的突触后支架蛋白结合。两个Abp1 F-肌动蛋白结合结构域的过表达增加了细的、丝状伪足样和蘑菇型棘突的长度,但显著降低了蘑菇型棘突的密度,这归因于缺乏Abp1 Src同源3(SH3)结构域。相反,全长Abp1的过表达增加了蘑菇型棘突和突触的密度。单独的SH3结构域对蘑菇型棘突具有显性负效应,而丝状伪足以及细的、未成熟棘突的密度保持不变。这表明肌动蛋白结合和SH3结构域相互作用对于Abp1在棘突成熟中的作用都至关重要。确实,敲低Abp1会显著降低蘑菇型棘突和突触的密度。Abp1在此与ProSAP1/Shank2和ProSAP2/Shank3密切协作,因为ProSAP2 RNA干扰抑制了Abp1的作用,并且ProSAP/Shank诱导的棘突头部宽度增加在Abp1共过表达时进一步增强,而在敲低Abp1时则降低。此外,干扰功能性Abp1-ProSAP蛋白复合物的形成会阻止ProSAP介导的棘突头部延伸。棘突头部延伸还依赖于局部Arp2/3复合物介导的肌动蛋白聚合,而这由Abp1通过Arp2/3复合物激活剂N-WASP(神经维斯科特-奥尔德里奇综合征蛋白)进行控制。因此,Abp1通过在突触后致密成分与突触后肌动蛋白动力学之间建立所需的功能连接,在突触的形成和形态控制中发挥重要作用。