Fischer Bernd, Roth Volker, Buhmann Joachim M
ETH Zürich, Institute of Computational Science, Universitätstrasse 6, 8092 Zürich, Switzerland.
Artif Intell Med. 2009 Feb-Mar;45(2-3):207-14. doi: 10.1016/j.artmed.2008.08.010. Epub 2008 Oct 5.
Differential quantification of proteins by liquid chromatography/mass spectrometry requires the alignment of a retention time axis. The alignment automatically corrects for time changes in the liquid chromatography unit when repeating two experiments.
In this paper we will show an extension of non-negative canonical correlation analysis. We introduce an adaptive scale space estimation that adapts the complexity of a monotone regression function to the density of measurements across the retention time. Furthermore, a global model selection of the scale is replaced by a local one, where we estimate the scale for each individual time axis, instead of a global parameter that holds for all time axes.
We show in experiments that we got a 13% gain. The performance gain is measured in the number of proteins that are detected to differ significantly in abundance for two different biological samples.
We conclude that the adaptive scale estimation and the local model selection can outperform the global model selection which yields a more effective selection of differentially abundant proteins.
通过液相色谱/质谱对蛋白质进行差异定量分析需要对保留时间轴进行校准。在校准重复两个实验时,可自动校正液相色谱单元中的时间变化。
在本文中,我们将展示非负典型相关分析的扩展。我们引入了一种自适应尺度空间估计,它能使单调回归函数的复杂度适应保留时间内测量值的密度。此外,尺度的全局模型选择被局部模型选择所取代,即我们为每个单独的时间轴估计尺度,而不是为所有时间轴设定一个全局参数。
我们在实验中表明获得了13%的提升。性能提升是通过检测出两种不同生物样品中丰度存在显著差异的蛋白质数量来衡量的。
我们得出结论,自适应尺度估计和局部模型选择优于全局模型选择,能更有效地选择差异丰富的蛋白质。