Suppr超能文献

改善关联研究中疾病易感性基因模式检测策略。

Improving strategies for detecting genetic patterns of disease susceptibility in association studies.

作者信息

Calle M L, Urrea V, Vellalta G, Malats N, Steen K V

机构信息

Department of Systems Biology, Universitat de Vic, Carrer de la Sagrada Família, 7-08500 Vic, Spain.

出版信息

Stat Med. 2008 Dec 30;27(30):6532-46. doi: 10.1002/sim.3431.

Abstract

The analysis of gene interactions and epistatic patterns of susceptibility is especially important for investigating complex diseases such as cancer characterized by the joint action of several genes. This work is motivated by a case-control study of bladder cancer, aimed at evaluating the role of both genetic and environmental factors in bladder carcinogenesis. In particular, the analysis of the inflammation pathway is of interest, for which information on a total of 282 SNPs in 108 genes involved in the inflammatory response is available. Detecting and interpreting interactions with such a large number of polymorphisms is a great challenge from both the statistical and the computational perspectives. In this paper we propose a two-stage strategy for identifying relevant interactions: (1) the use of a synergy measure among interacting genes and (2) the use of the model-based multifactor dimensionality reduction method (MB-MDR), a model-based version of the MDR method, which allows adjustment for confounders.

摘要

基因相互作用分析以及易感性的上位性模式对于研究诸如癌症等由多个基因共同作用导致的复杂疾病尤为重要。这项工作源于一项膀胱癌病例对照研究,旨在评估遗传和环境因素在膀胱癌发生过程中的作用。特别值得关注的是炎症通路分析,针对此可获取参与炎症反应的108个基因中总共282个单核苷酸多态性(SNP)的信息。从统计学和计算角度来看,检测并解释与如此大量多态性的相互作用是一项巨大挑战。在本文中,我们提出了一种用于识别相关相互作用的两阶段策略:(1)使用相互作用基因间的协同效应度量;(2)使用基于模型的多因素降维方法(MB-MDR),它是多因素降维方法(MDR)的基于模型的版本,可对混杂因素进行调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验