Suppr超能文献

人类烷基腺嘌呤DNA糖基化酶采用一种持续性的方式来搜寻DNA损伤。

Human alkyladenine DNA glycosylase employs a processive search for DNA damage.

作者信息

Hedglin Mark, O'Brien Patrick J

机构信息

Chemical Biology Program, University of Michigan, Ann Arbor, Michigan 48109-0606, USA.

出版信息

Biochemistry. 2008 Nov 4;47(44):11434-45. doi: 10.1021/bi801046y. Epub 2008 Oct 8.

Abstract

DNA repair proteins conduct a genome-wide search to detect and repair sites of DNA damage wherever they occur. Human alkyladenine DNA glycosylase (AAG) is responsible for recognizing a variety of base lesions, including alkylated and deaminated purines, and initiating their repair via the base excision repair pathway. We have investigated the mechanism by which AAG locates sites of damage using an oligonucleotide substrate containing two sites of DNA damage. This substrate was designed so that AAG randomly binds to either of the two lesions. AAG-catalyzed base excision creates a repair intermediate, and the subsequent partitioning between dissociation and diffusion to the second site can be quantified from the rates of formation of the different products. Our results demonstrate that AAG has the ability to slide for short distances along DNA at physiological salt concentrations. The processivity of AAG decreases with increasing ionic strength to become fully distributive at high ionic strengths, suggesting that electrostatic interactions between the negatively charged DNA and the positively charged DNA binding surface are important for nonspecific DNA binding. Although the amino terminus of the protein is dispensable for glycosylase activity at a single site, we find that deletion of the 80 amino-terminal amino acids significantly decreases the processivity of AAG. These observations support the idea that diffusion on undamaged DNA contributes to the search for sites of DNA damage.

摘要

DNA修复蛋白会在全基因组范围内进行搜索,以检测并修复任何位置出现的DNA损伤位点。人类烷基腺嘌呤DNA糖基化酶(AAG)负责识别多种碱基损伤,包括烷基化和脱氨基的嘌呤,并通过碱基切除修复途径启动对它们的修复。我们利用一种含有两个DNA损伤位点的寡核苷酸底物,研究了AAG定位损伤位点的机制。设计该底物的目的是使AAG随机结合到两个损伤位点中的任意一个。AAG催化的碱基切除会产生一个修复中间体,随后解离与扩散到第二个位点之间的分配情况可根据不同产物的形成速率来量化。我们的结果表明,在生理盐浓度下,AAG有能力沿着DNA短距离滑动。随着离子强度增加,AAG的持续性降低,在高离子强度下完全变为非持续性,这表明带负电荷的DNA与带正电荷的DNA结合表面之间的静电相互作用对于非特异性DNA结合很重要。虽然该蛋白的氨基末端对于单个位点的糖基化酶活性并非必需,但我们发现删除80个氨基末端氨基酸会显著降低AAG的持续性。这些观察结果支持了这样一种观点,即在未损伤的DNA上扩散有助于寻找DNA损伤位点。

相似文献

1
Human alkyladenine DNA glycosylase employs a processive search for DNA damage.
Biochemistry. 2008 Nov 4;47(44):11434-45. doi: 10.1021/bi801046y. Epub 2008 Oct 8.
2
Search for DNA damage by human alkyladenine DNA glycosylase involves early intercalation by an aromatic residue.
J Biol Chem. 2017 Sep 29;292(39):16070-16080. doi: 10.1074/jbc.M117.782813. Epub 2017 Jul 26.
3
Distinguishing Specific and Nonspecific Complexes of Alkyladenine DNA Glycosylase.
Biochemistry. 2018 Jul 31;57(30):4440-4454. doi: 10.1021/acs.biochem.8b00531. Epub 2018 Jul 16.
5
Isolating contributions from intersegmental transfer to DNA searching by alkyladenine DNA glycosylase.
J Biol Chem. 2013 Aug 23;288(34):24550-9. doi: 10.1074/jbc.M113.477018. Epub 2013 Jul 9.
6
QM/MM Study of the Reaction Catalyzed by Alkyladenine DNA Glycosylase: Examination of the Substrate Specificity of a DNA Repair Enzyme.
J Phys Chem B. 2017 Dec 14;121(49):11096-11108. doi: 10.1021/acs.jpcb.7b09646. Epub 2017 Dec 1.
8
Hopping enables a DNA repair glycosylase to search both strands and bypass a bound protein.
ACS Chem Biol. 2010 Apr 16;5(4):427-36. doi: 10.1021/cb1000185.
9
Recognition of 1,-ethenoguanine by alkyladenine DNA glycosylase is restricted by a conserved active-site residue.
J Biol Chem. 2020 Feb 7;295(6):1685-1693. doi: 10.1074/jbc.RA119.011459. Epub 2019 Dec 27.
10
Repair of Alkylation Damage in Eukaryotic Chromatin Depends on Searching Ability of Alkyladenine DNA Glycosylase.
ACS Chem Biol. 2015 Nov 20;10(11):2606-15. doi: 10.1021/acschembio.5b00409. Epub 2015 Sep 4.

引用本文的文献

2
Multifaceted nucleic acid probing with a rationally upgraded molecular rotor.
Chem Sci. 2024 Mar 7;15(13):5009-5018. doi: 10.1039/d4sc00141a. eCollection 2024 Mar 27.
5
Distinct Mechanisms of Target Search by Endonuclease VIII-like DNA Glycosylases.
Cells. 2022 Oct 11;11(20):3192. doi: 10.3390/cells11203192.
6
Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
Int J Mol Sci. 2022 Jul 20;23(14):7990. doi: 10.3390/ijms23147990.
7
Noncatalytic Domains in DNA Glycosylases.
Int J Mol Sci. 2022 Jun 30;23(13):7286. doi: 10.3390/ijms23137286.
8
Computational investigations on target-site searching and recognition mechanisms by thymine DNA glycosylase during DNA repair process.
Acta Biochim Biophys Sin (Shanghai). 2022 May 25;54(6):796-806. doi: 10.3724/abbs.2022050.
9
Base excision-initiated terminal deoxynucleotide transferase-assisted amplification for simultaneous detection of multiple DNA glycosylases.
Anal Bioanal Chem. 2022 May;414(11):3319-3327. doi: 10.1007/s00216-022-03978-9. Epub 2022 Mar 12.
10
Searching for DNA Damage: Insights From Single Molecule Analysis.
Front Mol Biosci. 2021 Nov 5;8:772877. doi: 10.3389/fmolb.2021.772877. eCollection 2021.

本文引用的文献

1
Correlated cleavage of single- and double-stranded substrates by uracil-DNA glycosylase.
FEBS Lett. 2008 Feb 6;582(3):410-4. doi: 10.1016/j.febslet.2008.01.002. Epub 2008 Jan 15.
2
Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability.
J Am Chem Soc. 2006 Sep 27;128(38):12510-9. doi: 10.1021/ja0634829.
3
A base-excision DNA-repair protein finds intrahelical lesion bases by fast sliding in contact with DNA.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5752-7. doi: 10.1073/pnas.0509723103. Epub 2006 Apr 3.
4
A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
Mol Microbiol. 2006 Mar;59(5):1602-9. doi: 10.1111/j.1365-2958.2006.05044.x.
5
Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15883-8. doi: 10.1073/pnas.0505378102. Epub 2005 Oct 21.
6
The DNA trackwalkers: principles of lesion search and recognition by DNA glycosylases.
Mutat Res. 2005 Sep 4;577(1-2):24-54. doi: 10.1016/j.mrfmmm.2005.03.011.
7
p53 linear diffusion along DNA requires its C terminus.
Mol Cell. 2004 Nov 5;16(3):413-24. doi: 10.1016/j.molcel.2004.09.032.
8
Oxanine DNA glycosylase activity from Mammalian alkyladenine glycosylase.
J Biol Chem. 2004 Sep 10;279(37):38177-83. doi: 10.1074/jbc.M405882200. Epub 2004 Jul 7.
9
Obstacle bypass in protein motion along DNA by two-dimensional rather than one-dimensional sliding.
J Biol Chem. 2004 Sep 10;279(37):38715-20. doi: 10.1074/jbc.M404504200. Epub 2004 Jul 2.
10
How do site-specific DNA-binding proteins find their targets?
Nucleic Acids Res. 2004 Jun 3;32(10):3040-52. doi: 10.1093/nar/gkh624. Print 2004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验