Leprovost Nicolas, Kim Eun-Jin
Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Sep;78(3 Pt 2):036319. doi: 10.1103/PhysRevE.78.036319. Epub 2008 Sep 22.
Forced turbulence combined with the effect of rotation and shear flow is studied. In a previous paper [N. Leprovost and E. J. Kim, Phys. Rev. E 78, 016301 (2008)], we considered the case where the shear and the rotation are perpendicular. Here, we consider the complementary case of parallel rotation and shear, elucidating how rotation and flow shear influence the generation of shear flow (e.g., the direction of energy cascade), turbulence level, transport of particles, and momentum. We show that turbulence amplitude and transport are always quenched due to strong shear ( xi=nuky2/A<<1 , where A is the shearing rate, nu is the molecular viscosity, and ky is a characteristic wave number of small-scale turbulence), with stronger reduction in the direction of the shear than those in the perpendicular directions. In contrast with the case where rotation and shear are perpendicular, we found that rotation affects turbulence amplitude only for very rapid rotation (Omega>>A) where it reduces slightly the anisotropy due to shear flow. Also, concerning the transport properties of turbulence, we find that rotation affects only the transport of particle and only for rapid rotation, leading to an almost isotropic transport (whereas, in the case of perpendicular rotation and shear, rotation favors isotropic transport even for slow rotation). Furthermore, the interaction between the shear and the rotation is shown to give rise to nondiffusive flux of angular momentum ( Lambda effect), even in the absence of external sources of anisotropy, which can provide a mechanism for the creation of shearing structures in astrophysical and geophysical systems.
研究了强迫湍流与旋转和剪切流效应的结合。在之前的一篇论文[N. Leprovost和E. J. Kim,《物理评论E》78,016301(2008)]中,我们考虑了剪切和旋转相互垂直的情况。在此,我们考虑旋转和平行剪切的互补情况,阐明旋转和流动剪切如何影响剪切流的产生(例如能量串级的方向)、湍流水平、粒子输运和动量。我们表明,由于强剪切(xi = nuky2/A<<1,其中A是剪切速率,nu是分子粘度,ky是小尺度湍流的特征波数),湍流振幅和输运总是受到抑制,剪切方向上的减小比垂直方向上的更强。与旋转和剪切相互垂直的情况不同,我们发现旋转仅在非常快速旋转(Omega>>A)时才会影响湍流振幅,此时它会略微降低由于剪切流引起的各向异性。此外,关于湍流的输运性质,我们发现旋转仅在快速旋转时才会影响粒子的输运,导致几乎各向同性的输运(而在旋转和剪切相互垂直的情况下,即使是缓慢旋转,旋转也有利于各向同性输运)。此外,即使在没有外部各向异性源的情况下,剪切和旋转之间的相互作用也会产生角动量的非扩散通量(兰姆达效应),这可以为天体物理和地球物理系统中剪切结构的形成提供一种机制。