Diez Roux A V
Department of Epidemiology, University of Michigan, 1214 South University 2nd floor, Ann Arbor MI 48103, USA.
J Epidemiol Community Health. 2008 Nov;62(11):957-9. doi: 10.1136/jech.2007.064311.
This commentary briefly summarises past work that has used multilevel analysis to investigate the multilevel determinants of health and outlines possible new directions in this area. Topics discussed include the need to (1) examine contexts other than neighbourhoods; (2) improve measurement of group-level constructs; (3) apply techniques more appropriate for causal inference from observational data; (4) analyse data from "natural experiments" involving exogenous variations in contextual characteristics; (5) examine dependencies between groups (such as spatial dependencies) more broadly and allow for reciprocal relations between individuals and contexts; and (6) contrast multilevel statistical models (or regression models generally) and complex systems models in the study of multilevel effects.
本评论简要总结了过去利用多层次分析来研究健康的多层次决定因素的工作,并概述了该领域可能的新方向。讨论的主题包括需要:(1)研究邻里以外的其他背景;(2)改进群体层面构念的测量;(3)应用更适合从观测数据进行因果推断的技术;(4)分析来自涉及背景特征外生变化的“自然实验”的数据;(5)更广泛地研究群体之间的依存关系(如空间依存关系),并考虑个体与背景之间的相互关系;以及(6)在多层次效应研究中对比多层次统计模型(或一般回归模型)与复杂系统模型。