Suppr超能文献

成纤维细胞生长因子受体3(FGFR3)通过丝裂原活化蛋白激酶(MAPK)信号通路促进骺软骨联合闭合及骨化中心融合。

FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway.

作者信息

Matsushita Takehiko, Wilcox William R, Chan Yuk Yu, Kawanami Aya, Bükülmez Hülya, Balmes Gener, Krejci Pavel, Mekikian Pertchoui B, Otani Kazuyuki, Yamaura Isakichi, Warman Matthew L, Givol David, Murakami Shunichi

机构信息

Department of Orthopaedics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

出版信息

Hum Mol Genet. 2009 Jan 15;18(2):227-40. doi: 10.1093/hmg/ddn339. Epub 2008 Oct 15.

Abstract

Activating mutations in FGFR3 cause achondroplasia and thanatophoric dysplasia, the most common human skeletal dysplasias. In these disorders, spinal canal and foramen magnum stenosis can cause serious neurologic complications. Here, we provide evidence that FGFR3 and MAPK signaling in chondrocytes promote synchondrosis closure and fusion of ossification centers. We observed premature synchondrosis closure in the spine and cranial base in human cases of homozygous achondroplasia and thanatophoric dysplasia as well as in mouse models of achondroplasia. In both species, premature synchondrosis closure was associated with increased bone formation. Chondrocyte-specific activation of Fgfr3 in mice induced premature synchondrosis closure and enhanced osteoblast differentiation around synchondroses. FGF signaling in chondrocytes increases Bmp ligand mRNA expression and decreases Bmp antagonist mRNA expression in a MAPK-dependent manner, suggesting a role for Bmp signaling in the increased bone formation. The enhanced bone formation would accelerate the fusion of ossification centers and limit the endochondral bone growth. Spinal canal and foramen magnum stenosis in heterozygous achondroplasia patients, therefore, may occur through premature synchondrosis closure. If this is the case, then any growth-promoting treatment for these complications of achondroplasia must precede the timing of the synchondrosis closure.

摘要

FGFR3激活突变可导致软骨发育不全和致死性骨发育不良,这是人类最常见的骨骼发育异常。在这些疾病中,椎管和枕骨大孔狭窄可导致严重的神经并发症。在此,我们提供证据表明软骨细胞中的FGFR3和MAPK信号通路促进软骨联合闭合和骨化中心融合。我们在纯合子软骨发育不全和致死性骨发育不良的人类病例以及软骨发育不全的小鼠模型中观察到脊柱和颅底的软骨联合过早闭合。在这两个物种中,软骨联合过早闭合均与骨形成增加有关。小鼠软骨细胞特异性激活Fgfr3可诱导软骨联合过早闭合,并增强软骨联合周围的成骨细胞分化。软骨细胞中的FGF信号以MAPK依赖的方式增加Bmp配体mRNA表达并降低Bmp拮抗剂mRNA表达,提示Bmp信号在增加的骨形成中起作用。增强的骨形成会加速骨化中心融合并限制软骨内骨生长。因此,杂合子软骨发育不全患者的椎管和枕骨大孔狭窄可能是通过软骨联合过早闭合发生的。如果是这样,那么针对软骨发育不全这些并发症的任何促进生长的治疗都必须在软骨联合闭合之前进行。

相似文献

1
FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway.
Hum Mol Genet. 2009 Jan 15;18(2):227-40. doi: 10.1093/hmg/ddn339. Epub 2008 Oct 15.
2
Genetic inactivation of ERK1 and ERK2 in chondrocytes promotes bone growth and enlarges the spinal canal.
J Orthop Res. 2011 Mar;29(3):375-9. doi: 10.1002/jor.21262. Epub 2010 Oct 4.
4
HDAC6 deficiency or inhibition blocks FGFR3 accumulation and improves bone growth in a model of achondroplasia.
Hum Mol Genet. 2016 Oct 1;25(19):4227-4243. doi: 10.1093/hmg/ddw255. Epub 2016 Aug 9.
5
Maternal administration of meclozine for the treatment of foramen magnum stenosis in transgenic mice with achondroplasia.
J Neurosurg Pediatr. 2017 Jan;19(1):91-95. doi: 10.3171/2016.7.PEDS16199. Epub 2016 Oct 21.
6
FGFR3 induces degradation of BMP type I receptor to regulate skeletal development.
Biochim Biophys Acta. 2014 Jul;1843(7):1237-47. doi: 10.1016/j.bbamcr.2014.03.011. Epub 2014 Mar 20.
8
Mutant FGFR3 associated with SADDAN disease causes cytoskeleton disorganization through PLCγ1/Src-mediated paxillin hyperphosphorylation.
Int J Biochem Cell Biol. 2018 Feb;95:17-26. doi: 10.1016/j.biocel.2017.12.008. Epub 2017 Dec 11.
9
Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias.
Dev Cell. 2007 Dec;13(6):872-83. doi: 10.1016/j.devcel.2007.09.016.
10
FGFR3 mutation causes abnormal membranous ossification in achondroplasia.
Hum Mol Genet. 2014 Jun 1;23(11):2914-25. doi: 10.1093/hmg/ddu004. Epub 2014 Jan 12.

引用本文的文献

1
RUNX2 is essential for maintaining synchondrosis chondrocytes and cranial base growth.
Bone Res. 2025 May 29;13(1):57. doi: 10.1038/s41413-025-00426-z.
2
Advances in the mechanism and therapies of achondroplasia.
Genes Dis. 2024 Sep 24;12(4):101436. doi: 10.1016/j.gendis.2024.101436. eCollection 2025 Jul.
3
TYRA-300, an FGFR3-selective inhibitor, promotes bone growth in two FGFR3-driven models of chondrodysplasia.
JCI Insight. 2025 Apr 3;10(9). doi: 10.1172/jci.insight.189307. eCollection 2025 May 8.
4
Rhythms in Remodeling: Posttranslational Regulation of Bone by the Circadian Clock.
Biomedicines. 2025 Mar 13;13(3):705. doi: 10.3390/biomedicines13030705.
7
Fgfr3 enhancer deletion markedly improves all skeletal features in a mouse model of achondroplasia.
J Clin Invest. 2025 Jan 16;135(2):e184929. doi: 10.1172/JCI184929.
10
Vosoritide therapy in children with achondroplasia under 5 years of age.
Transl Pediatr. 2024 Sep 30;13(9):1517-1520. doi: 10.21037/tp-24-186. Epub 2024 Sep 11.

本文引用的文献

2
Achondroplasia.
Lancet. 2007 Jul 14;370(9582):162-172. doi: 10.1016/S0140-6736(07)61090-3.
5
Endocrine regulation of the growth plate.
Horm Res. 2005;64(4):157-65. doi: 10.1159/000088791. Epub 2005 Oct 4.
6
Health supervision for children with achondroplasia.
Pediatrics. 2005 Sep;116(3):771-83. doi: 10.1542/peds.2005-1440.
9
The cytoplasmic tyrosine kinase Pyk2 as a novel effector of fibroblast growth factor receptor 3 activation.
J Biol Chem. 2004 Jul 2;279(27):28450-7. doi: 10.1074/jbc.M403335200. Epub 2004 Apr 22.
10
Stat1 controls postnatal bone formation by regulating fibroblast growth factor signaling in osteoblasts.
J Biol Chem. 2004 Jun 25;279(26):27743-52. doi: 10.1074/jbc.M314323200. Epub 2004 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验