Suppr超能文献

用于高通量生物分析的微型多位磁性标签的可重写远程编码与解码

Rewritable remote encoding and decoding of miniature multi-bit magnetic tags for high-throughput biological analysis.

作者信息

Jeong J-R, Llandro J, Hong Bingyan, Hayward T J, Mitrelias T, Kopper K P, Trypiniotis T, Steinmuller S J, Simpson G K, Bland J A C

机构信息

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.

出版信息

Lab Chip. 2008 Nov;8(11):1883-7. doi: 10.1039/b807632d. Epub 2008 Oct 7.

Abstract

We have investigated a new magnetic labelling technology for high-throughput biomolecular identification and DNA sequencing. Planar multi-bit magnetic tags comprising a magnetic barcode formed by an ensemble of micron-sized thin film ferromagnetic Co bars and a 15 x 15 micron Au square for immobilization of probe molecules have been designed and fabricated. We show that by using a globally applied magnetic field and magneto-optical Kerr microscopy the magnetic elements in the multi-bit magnetic tags can be addressed individually and encoded/decoded remotely. The power of the approach is the read/write technique, which allows modest globally applied magnetic fields to write almost unlimited numbers of codes to populations of tags rather than individuals. The magnetic nature of the technology also lends itself naturally to fast, remote decoding and the ability to rewrite tags if needed. We demonstrate the critical steps needed to show the feasibility of this technology, including fabrication, remote writing and reading, and successful functionalization of the tags as verified by fluorescence detection. This approach is ideal for encoding information on tags in microfluidic flow or suspension, in order to label oligonucleotides during split-and-mix synthesis, and for combinatorial library-based high-throughput multiplexed bioassays.

摘要

我们研究了一种用于高通量生物分子识别和DNA测序的新型磁标记技术。已设计并制造出平面多位磁标签,其包含由微米级薄膜铁磁钴棒的集合形成的磁性条形码以及用于固定探针分子的15×15微米金方块。我们表明,通过使用全局施加的磁场和磁光克尔显微镜,可以单独寻址多位磁标签中的磁性元件,并进行远程编码/解码。该方法的优势在于读/写技术,它允许适度的全局施加磁场向标签群体而非单个标签写入几乎无限数量的代码。该技术的磁性本质也使其自然适用于快速、远程解码以及在需要时重写标签的能力。我们展示了证明该技术可行性所需的关键步骤,包括制造、远程写入和读取,以及通过荧光检测验证的标签成功功能化。这种方法非常适合在微流体流动或悬浮液中对标签进行信息编码,以便在拆分和混合合成过程中标记寡核苷酸,以及用于基于组合文库的高通量多重生物测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验