Suppr超能文献

流动诱导的热效应作用于空间DNA解链

Flow-induced thermal effects on spatial DNA melting.

作者信息

Crews Niel, Ameel Tim, Wittwer Carl, Gale Bruce

机构信息

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA.

出版信息

Lab Chip. 2008 Nov;8(11):1922-9. doi: 10.1039/b807034b. Epub 2008 Aug 29.

Abstract

Continuous-flow temperature gradient microfluidics can be used to perform spatial DNA melting analysis. To accurately characterize the melting behavior of PCR amplicon across a spatial temperature gradient, the temperature distribution along the microfluidic channel must be both stable and known. Although temperature change created by micro-flows is often neglected, flow-induced effects can cause significant local variations in the temperature profile within the fluid and the closely surrounding substrate. In this study, microfluidic flow within a substrate with a quasi-linear temperature gradient has been examined experimentally and numerically. Serpentine geometries consisting of 10 mm long channel sections joined with 90 degrees and/or 180 degrees bends were studied. Infrared thermometry was used to characterize the surface temperature variations and a 3-D conjugate heat transfer model was used to predict interior temperatures for multiple device configurations. The thermal interaction between adjacent counter-flow channel sections, which is related to their spacing and substrate material properties, contributes significantly to the temperature profile within the microchannel and substrate. The volumetric flow rate and axial temperature gradient are directly proportional to the thermal variations within the device, while these flow-induced effects are largely independent of the cross-sectional area of the microchannel. The quantitative results and qualitative trends that are presented in this study are applicable to temperature gradient heating systems as well as other microfluidic thermal systems.

摘要

连续流温度梯度微流体可用于进行空间DNA熔解分析。为了准确表征PCR扩增子在空间温度梯度上的熔解行为,沿微流体通道的温度分布必须既稳定又已知。尽管微流引起的温度变化常常被忽略,但流动诱导效应会导致流体及其紧邻的周围基质内温度分布出现显著的局部变化。在本研究中,对具有准线性温度梯度的基质内的微流体流动进行了实验和数值研究。研究了由10毫米长的通道段通过90度和/或180度弯曲连接而成的蛇形几何结构。采用红外热成像法表征表面温度变化,并使用三维共轭传热模型预测多种器件配置下的内部温度。相邻逆流通道段之间的热相互作用与其间距和基质材料特性有关,对微通道和基质内的温度分布有显著贡献。体积流量和轴向温度梯度与器件内的热变化成正比,而这些流动诱导效应在很大程度上与微通道的横截面积无关。本研究给出的定量结果和定性趋势适用于温度梯度加热系统以及其他微流体热系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验