Suppr超能文献

小麦穗部赤霉病菌接种体密度与气象变量间的时滞分析。

A Distributed Lag Analysis of the Relationship Between Gibberella zeae Inoculum Density on Wheat Spikes and Weather Variables.

出版信息

Phytopathology. 2007 Dec;97(12):1608-24. doi: 10.1094/PHYTO-97-12-1608.

Abstract

ABSTRACT In an effort to characterize the association between weather variables and inoculum of Gibberella zeae in wheat canopies, spikes were sampled and assayed for pathogen propagules from plots established in Indiana, North Dakota, Ohio, Pennsylvania, South Dakota, and Manitoba between 1999 and 2005. Inoculum abundance was quantified as the daily number of colony forming units per spike (CFU/spike). A total of 49 individual weather variables for 24-h periods were generated from measurements of ambient weather data. Polynomial distributed lag regression analysis, followed by linear mixed model analysis, was used to (i) identify weather variables significantly related to log-transformed CFU/spike (the response variable; Y), (ii) determine the time window (i.e., lag length) over which each weather variable affected Y, (iii) determine the form of the relationship between each weather variable and Y (defined in terms of the polynomial degree for the relationship between the parameter weights for the weather variables and the time lag involved), and (iv) account for location-specific effects and random effects of years within locations on the response variable. Both location and year within location affected the magnitude of Y, but there was no consistent trend in Y over time. Y on each day was significantly and simultaneously related to weather variables on the day of sampling and on the 8 days prior to sampling (giving a 9-day time window). The structural relationship corresponded to polynomial degrees of 0, 1, or 2, generally showing a smooth change in the parameter weights and time lag. Moisture- (e.g., relative humidity-) related variables had the strongest relationship with Y, but air temperature- and rainfall-related variables also significantly affected Y. The overall marginal effect of each weather variable on Y was positive. Thus, local weather conditions can be utilized to improve estimates of spore density on wheat spikes around the time of flowering.

摘要

摘要 为了描述天气变量与小麦冠层内玉米赤霉菌接种体之间的关系,我们从 1999 年至 2005 年在印第安纳州、北达科他州、俄亥俄州、宾夕法尼亚州、南达科他州和马尼托巴省建立的田间试验中采集了穗部样本并对病原菌繁殖体进行了检测。接种体丰度用每穗形成的菌落形成单位数(CFU/穗)来量化。通过对环境气象数据的测量,生成了 49 个 24 小时周期的单个气象变量。采用多项式分布滞后回归分析,然后进行线性混合模型分析,以确定与对数 CFU/穗(因变量;Y)显著相关的天气变量,确定每个天气变量影响 Y 的时间窗口(即滞后长度),确定每个天气变量与 Y 之间的关系形式(根据天气变量的参数权重与涉及的时间滞后之间的关系的多项式阶数来定义),并考虑位置特定的效应和位置内年份的随机效应对因变量的影响。位置和位置内的年份都会影响 Y 的幅度,但 Y 在时间上没有一致的趋势。每天的 Y 与采样当天和采样前 8 天的天气变量显著且同时相关(即 9 天的时间窗口)。结构关系对应于 0、1 或 2 的多项式阶数,通常表现出参数权重和时间滞后的平滑变化。与湿度(例如相对湿度)相关的变量与 Y 的关系最强,但与空气温度和降雨相关的变量也显著影响 Y。每个天气变量对 Y 的总体边际效应为正。因此,当地的天气条件可以用来提高开花期前后小麦穗上孢子密度的估计值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验