Suppr超能文献

拟南芥微小RNA从随机序列的进化

Evolution of Arabidopsis thaliana microRNAs from random sequences.

作者信息

Felippes Felipe Fenselau de, Schneeberger Korbinian, Dezulian Tobias, Huson Daniel H, Weigel Detlef

机构信息

Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.

出版信息

RNA. 2008 Dec;14(12):2455-9. doi: 10.1261/rna.1149408. Epub 2008 Oct 24.

Abstract

One mechanism for the origin of new plant microRNAs (miRNAs) is from inverted duplications of transcribed genes. However, even though many young MIRNA genes have recently been identified in Arabidopsis thaliana, only a subset shows evidence for having evolved by this route. We propose that the hundreds of thousands of partially self-complementary foldback sequences found in a typical plant genome provide an alternative path for miRNA evolution. Our genome-wide analyses of young MIRNA genes suggest that some arose from DNA that either has self-complementarity by chance or that represents a highly eroded inverted duplication. These observations are compatible with the idea that, following capture of transcriptional regulatory sequences, random foldbacks can occasionally spawn new miRNAs. Subsequent stabilization through coevolution with initially fortuitous targets may lead to fixation of a small subset of these proto-miRNA genes.

摘要

新植物微小RNA(miRNA)产生的一种机制是转录基因的反向重复。然而,尽管最近在拟南芥中鉴定出了许多年轻的MIRNA基因,但只有一部分显示出通过这种途径进化的证据。我们提出,在典型植物基因组中发现的数十万部分自我互补的回文序列为miRNA进化提供了一条替代途径。我们对年轻MIRNA基因的全基因组分析表明,一些基因起源于偶然具有自我互补性的DNA,或者代表高度退化的反向重复。这些观察结果与以下观点一致:在捕获转录调控序列后,随机回文偶尔会产生新的miRNA。随后通过与最初偶然的靶标共同进化实现稳定,可能导致这些原始miRNA基因的一小部分被固定下来。

相似文献

1
Evolution of Arabidopsis thaliana microRNAs from random sequences.
RNA. 2008 Dec;14(12):2455-9. doi: 10.1261/rna.1149408. Epub 2008 Oct 24.
2
Computational evidence for hundreds of non-conserved plant microRNAs.
BMC Genomics. 2005 Sep 13;6:119. doi: 10.1186/1471-2164-6-119.
3
Significant sequence similarities in promoters and precursors of Arabidopsis thaliana non-conserved microRNAs.
Bioinformatics. 2006 Nov 1;22(21):2585-9. doi: 10.1093/bioinformatics/btl437. Epub 2006 Aug 10.
4
Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae.
Mol Biol Evol. 2008 May;25(5):892-902. doi: 10.1093/molbev/msn029. Epub 2008 Feb 22.
5
Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes.
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6. doi: 10.1073/pnas.0404025101. Epub 2004 Jul 22.
6
Evolution of Arabidopsis microRNA families through duplication events.
Genome Res. 2006 Apr;16(4):510-9. doi: 10.1101/gr.4680506. Epub 2006 Mar 6.
7
Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana.
Nat Genet. 2004 Dec;36(12):1282-90. doi: 10.1038/ng1478. Epub 2004 Nov 21.
8
Structure determinants for accurate processing of miR172a in Arabidopsis thaliana.
Curr Biol. 2010 Jan 12;20(1):42-8. doi: 10.1016/j.cub.2009.10.073.
9
MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana.
Plant Cell. 2010 Apr;22(4):1074-89. doi: 10.1105/tpc.110.073999. Epub 2010 Apr 20.
10
Alternative mRNA processing increases the complexity of microRNA-based gene regulation in Arabidopsis.
Plant J. 2012 May;70(3):421-31. doi: 10.1111/j.1365-313X.2011.04882.x. Epub 2012 Jan 16.

引用本文的文献

1
Non-conserved microRNAs and their roles in plants: the case for legumes.
Plant Biol (Stuttg). 2025 Jun;27(4):450-460. doi: 10.1111/plb.70027. Epub 2025 May 1.
2
Evolution of Plant Conserved microRNAs After Whole-Genome Duplications.
Genome Biol Evol. 2025 Mar 6;17(3). doi: 10.1093/gbe/evaf045.
4
Genome-Wide Dissection of Selection on microRNA Target Genes Involved in Rice Flower Development.
Plants (Basel). 2024 Nov 22;13(23):3281. doi: 10.3390/plants13233281.
5
Role of miRNAs in sucrose stress response, reactive oxygen species, and anthocyanin biosynthesis in .
Front Plant Sci. 2023 Nov 3;14:1278320. doi: 10.3389/fpls.2023.1278320. eCollection 2023.
6
Cross-Kingdom Regulation of Plant-Derived miRNAs in Modulating Insect Development.
Int J Mol Sci. 2023 Apr 28;24(9):7978. doi: 10.3390/ijms24097978.
9
Genome-wide identification of MITE-derived microRNAs and their targets in bread wheat.
BMC Genomics. 2022 Feb 22;23(1):154. doi: 10.1186/s12864-022-08364-4.
10
CRISPR/Cas9 mutants of tomato MICRORNA164 genes uncover their functional specialization in development.
Plant Physiol. 2021 Nov 3;187(3):1636-1652. doi: 10.1093/plphys/kiab376.

本文引用的文献

1
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).
Nature. 2008 Apr 24;452(7190):991-6. doi: 10.1038/nature06856.
2
Evolution of microRNAs and their targets: are all microRNAs biologically relevant?
Biochim Biophys Acta. 2008 Nov;1779(11):725-34. doi: 10.1016/j.bbagrm.2008.02.007. Epub 2008 Mar 10.
3
The birth and death of microRNA genes in Drosophila.
Nat Genet. 2008 Mar;40(3):351-5. doi: 10.1038/ng.73. Epub 2008 Feb 17.
4
Specialization and evolution of endogenous small RNA pathways.
Nat Rev Genet. 2007 Nov;8(11):884-96. doi: 10.1038/nrg2179.
6
A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana.
Genes Dev. 2006 Dec 15;20(24):3407-25. doi: 10.1101/gad.1476406.
7
The genome of black cottonwood, Populus trichocarpa (Torr. & Gray).
Science. 2006 Sep 15;313(5793):1596-604. doi: 10.1126/science.1128691.
8
MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant.
Genome Res. 2006 Oct;16(10):1276-88. doi: 10.1101/gr.5530106. Epub 2006 Sep 5.
9
MicroRNAS and their regulatory roles in plants.
Annu Rev Plant Biol. 2006;57:19-53. doi: 10.1146/annurev.arplant.57.032905.105218.
10
Hairpin RNA: a secondary structure of primary importance.
Cell Mol Life Sci. 2006 Apr;63(7-8):901-8. doi: 10.1007/s00018-005-5558-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验