Suppr超能文献

组织弹性特性作为前列腺癌的生物标志物。

Tissue elasticity properties as biomarkers for prostate cancer.

作者信息

Hoyt Kenneth, Castaneda Benjamin, Zhang Man, Nigwekar Priya, di Sant'agnese P Anthony, Joseph Jean V, Strang John, Rubens Deborah J, Parker Kevin J

机构信息

Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.

出版信息

Cancer Biomark. 2008;4(4-5):213-25. doi: 10.3233/cbm-2008-44-505.

Abstract

In this paper we evaluate tissue elasticity as a longstanding but qualitative biomarker for prostate cancer and sonoelastography as an emerging imaging tool for providing qualitative and quantitative measurements of prostate tissue stiffness. A Kelvin-Voigt Fractional Derivative (KVFD) viscoelastic model was used to characterize mechanical stress relaxation data measured from human prostate tissue samples. Mechanical testing results revealed that the viscosity parameter for cancerous prostate tissue is greater than that derived from normal tissue by a factor of approximately 2.4. It was also determined that a significant difference exists between normal and cancerous prostate tissue stiffness (p < 0.01) yielding an average elastic contrast that increases from 2.1 at 0.1 Hz to 2.5 at 150 Hz. Qualitative sonoelastographic results show promise for cancer detection in prostate and may prove to be an effective adjunct imaging technique for biopsy guidance. Elasticity images obtained with quantitative sonoelastography agree with mechanical testing and histological results. Overall, results indicate tissue elasticity is a promising biomarker for prostate cancer.

摘要

在本文中,我们评估了组织弹性作为一种长期存在但定性的前列腺癌生物标志物,以及超声弹性成像作为一种新兴的成像工具,用于对前列腺组织硬度进行定性和定量测量。采用开尔文-沃伊特分数阶导数(KVFD)粘弹性模型来表征从人类前列腺组织样本测量得到的机械应力松弛数据。力学测试结果表明,癌性前列腺组织的粘度参数比正常组织的粘度参数大约高2.4倍。还确定了正常前列腺组织和癌性前列腺组织的硬度存在显著差异(p < 0.01),产生的平均弹性对比度从0.1 Hz时的2.1增加到150 Hz时的2.5。定性超声弹性成像结果显示出在前列腺癌检测方面的前景,并且可能被证明是一种用于活检引导的有效辅助成像技术。通过定量超声弹性成像获得的弹性图像与力学测试和组织学结果一致。总体而言,结果表明组织弹性是一种有前景的前列腺癌生物标志物。

相似文献

1
Tissue elasticity properties as biomarkers for prostate cancer.
Cancer Biomark. 2008;4(4-5):213-25. doi: 10.3233/cbm-2008-44-505.
2
Quantitative characterization of viscoelastic properties of human prostate correlated with histology.
Ultrasound Med Biol. 2008 Jul;34(7):1033-42. doi: 10.1016/j.ultrasmedbio.2007.11.024. Epub 2008 Feb 6.
3
Crawling wave detection of prostate cancer: preliminary in vitro results.
Med Phys. 2011 May;38(5):2563-71. doi: 10.1118/1.3569578.
4
Characterizing stiffness of human prostates using acoustic radiation force.
Ultrason Imaging. 2010 Oct;32(4):201-13. doi: 10.1177/016173461003200401.
5
Towards clinical prostate ultrasound elastography using full inversion approach.
Med Phys. 2014 Mar;41(3):033501. doi: 10.1118/1.4864476.
6
Stiffness mapping prostate biopsy samples using a tactile sensor.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8515-8. doi: 10.1109/IEMBS.2011.6092101.
7
Quantitative sonoelastography for the in vivo assessment of skeletal muscle viscoelasticity.
Phys Med Biol. 2008 Aug 7;53(15):4063-80. doi: 10.1088/0031-9155/53/15/004. Epub 2008 Jul 8.
9
Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin-Voigt fractional derivative modeling.
Biomech Model Mechanobiol. 2020 Dec;19(6):2163-2177. doi: 10.1007/s10237-020-01330-7. Epub 2020 Apr 25.
10
Mechanical validation of viscoelastic parameters for different interface pressures using the Kelvin-Voigt fractional derivative model.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1512-1515. doi: 10.1109/EMBC48229.2022.9872009.

引用本文的文献

1
On the applicability of x-ray strain imaging using the edge illumination technique in biomedical applications.
J Phys D Appl Phys. 2025 Aug 4;58(31):315402. doi: 10.1088/1361-6463/adf452.
2
Magnetic Resonance Elastography for the Detection and Classification of Prostate Cancer.
Cancers (Basel). 2024 Oct 15;16(20):3494. doi: 10.3390/cancers16203494.
3
Mechanical rheological model on the assessment of elasticity and viscosity in tissue inflammation: A systematic review.
PLoS One. 2024 Jul 15;19(7):e0307113. doi: 10.1371/journal.pone.0307113. eCollection 2024.
4
Prostate tissue ablation and drug delivery by an image-guided injectable ionic liquid in ex vivo and in vivo models.
Sci Transl Med. 2024 Jul 3;16(754):eadn7982. doi: 10.1126/scitranslmed.adn7982.
5
Mechanical properties of human tumour tissues and their implications for cancer development.
Nat Rev Phys. 2024 Apr;6(4):269-282. doi: 10.1038/s42254-024-00707-2. Epub 2024 Mar 19.
6
Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies.
Regen Biomater. 2024 Feb 20;11:rbae016. doi: 10.1093/rb/rbae016. eCollection 2024.
8
Variability of Transrectal Shear Wave Elastography in a Phantom Model.
J Korean Soc Radiol. 2023 Sep;84(5):1110-1122. doi: 10.3348/jksr.2023.0051. Epub 2023 Sep 16.
9
Biophysics in tumor growth and progression: from single mechano-sensitive molecules to mechanomedicine.
Oncogene. 2023 Nov;42(47):3457-3490. doi: 10.1038/s41388-023-02844-x. Epub 2023 Oct 20.

本文引用的文献

1
A new system for the acquisition of ultrasonic multicompression strain images of the human prostate in vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(5):1147-54. doi: 10.1109/58.796120.
2
Two-dimensional sonoelastographic shear velocity imaging.
Ultrasound Med Biol. 2008 Feb;34(2):276-88. doi: 10.1016/j.ultrasmedbio.2007.07.011. Epub 2007 Oct 23.
3
Real-time shear velocity imaging using sonoelastographic techniques.
Ultrasound Med Biol. 2007 Jul;33(7):1086-97. doi: 10.1016/j.ultrasmedbio.2007.01.009. Epub 2007 Apr 16.
4
Value of contrast-enhanced ultrasound and elastography in imaging of prostate cancer.
Curr Opin Urol. 2007 Jan;17(1):39-47. doi: 10.1097/MOU.0b013e328011b85c.
5
Resonance sensor measurements of stiffness variations in prostate tissue in vitro--a weighted tissue proportion model.
Physiol Meas. 2006 Dec;27(12):1373-86. doi: 10.1088/0967-3334/27/12/009. Epub 2006 Nov 10.
7
Breast disease: clinical application of US elastography for diagnosis.
Radiology. 2006 May;239(2):341-50. doi: 10.1148/radiol.2391041676. Epub 2006 Feb 16.
8
Breast lesions: evaluation with US strain imaging--clinical experience of multiple observers.
Radiology. 2006 Feb;238(2):425-37. doi: 10.1148/radiol.2381041336.
9
Prostate cancer: three-dimensional sonoelastography for in vitro detection.
Radiology. 2005 Dec;237(3):981-5. doi: 10.1148/radiol.2373041573. Epub 2005 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验