Unal Gozde, Nain Delphine, Slabaugh Greg, Fang Tong
Faculty of Engineering and Natural Sciences, Sabanci University, Turkey.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):518-26. doi: 10.1007/978-3-540-85988-8_62.
3D shape modeling is a crucial component of rapid prototyping systems that customize shapes of implants and prosthetic devices to a patient's anatomy. In this paper, we present a solution to the problem of customized 3D shape modeling using a statistical shape analysis framework. We design a novel method to learn the relationship between two classes of shapes, which are related by certain operations or transformation. The two associated shape classes are represented in a lower dimensional manifold, and the reduced set of parameters obtained in this subspace is utilized in an estimation, which is exemplified by a multivariate regression in this paper. We demonstrate our method with a felicitous application to estimation of customized hearing aid devices.
三维形状建模是快速成型系统的关键组成部分,该系统可根据患者的解剖结构定制植入物和假体装置的形状。在本文中,我们提出了一种使用统计形状分析框架来解决定制三维形状建模问题的解决方案。我们设计了一种新颖的方法来学习两类形状之间的关系,这两类形状通过某些操作或变换相关联。这两个相关的形状类在低维流形中表示,并且在该子空间中获得的简化参数集用于估计,本文以多元回归为例进行说明。我们通过将我们的方法巧妙地应用于定制助听器装置的估计来证明我们的方法。