Lai Zhaoqiang, Hua Jing
Department of Computer Science, Wayne State University, Detroit, MI 48202, USA.
Med Image Comput Comput Assist Interv. 2008;11(Pt 2):44-51. doi: 10.1007/978-3-540-85990-1_6.
In this paper, we present a novel and efficient surface matching framework through shape image representation. This representation allows us to simplify a 3D surface matching problem to a 2D shape image matching problem. Furthermore, we present a shape image diffusion-based method to find the most robust features to construct the matching and registration of surfaces. This is particularly important for inter-subject surfaces from medical scans of different subjects since these surfaces exhibit the inherited physiological variances among subjects. We conducted extensive experiments on real 3D human neocortical surfaces, which demonstrate the excellent performance of our approach in terms of accuracy and robustness.
在本文中,我们通过形状图像表示提出了一种新颖且高效的表面匹配框架。这种表示使我们能够将三维表面匹配问题简化为二维形状图像匹配问题。此外,我们提出了一种基于形状图像扩散的方法来找到最稳健的特征,以构建表面的匹配与配准。这对于来自不同受试者医学扫描的个体间表面尤为重要,因为这些表面呈现出受试者之间固有的生理差异。我们在真实的三维人类新皮质表面上进行了广泛实验,结果表明我们的方法在准确性和稳健性方面表现出色。