Hesp Kevin D, McDonald Robert, Ferguson Michael J, Stradiotto Mark
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4J3, Canada.
J Am Chem Soc. 2008 Dec 3;130(48):16394-406. doi: 10.1021/ja8062277.
Treatment of 0.5 equiv of Cp*IrCl(2) with 1/3-P(i)Pr(2)-2-S(t)Bu-indene afforded CpIr(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (1) in 95% yield (Cp = eta(5)-C(5)Me(5)). Addition of AgOTf or LiB(C(6)F(5))(4) x 2.5 OEt(2) to 1 gave Cp*Ir(kappa(2)-3-P(i)Pr(2)-2-S-indene)X(-) (2X(-); X = OTf, 78%; X = B(C(6)F(5))(4), 82%), which represent the first examples of isolable coordinatively unsaturated Cp'Ir(kappa(2)-P,S)X(-) complexes. Exposure of 2OTf(-) to CO afforded 2 x COOTf(-) in 91% yield, while treatment of 2B(C(6)F(5))(4)(-) with PMe(3) generated 2 x PMe(3)B(C(6)F(5))(4)(-) in 94% yield. Treatment of 1 with K(2)CO(3) in CH(3)CN allowed for the isolation of the unusual adduct 3 x CH(3)CN (41% isolated yield), in which the CH(3)CN bridges the Lewis acidic CpIr and Lewis basic indenide fragments of the targeted coordinatively unsaturated zwitterion CpIr(kappa(2)-3-P(i)Pr(2)-2-S-indenide) (3). In contrast to the formation of 2 x COOTf(-), exposure of 3 x CH(3)CN to CO did not afford 3 x CO; instead, a clean 1:1 mixture of (kappa(2)-3-P(i)Pr(2)-2-S-indene)Ir(CO)(2) (4) and 1,2,3,4-tetramethylfulvene was generated. Treatment of 2OTf(-) with Ph(2)SiH(2) resulted in the net loss of Ph(2)Si(OTf)H to give CpIr(H)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (5) in 44% yield. In contrast, treatment of 2B(C(6)F(5))(4)(-) with Ph(2)SiH(2) or PhSiH(3) proceeded via H-Si addition across Ir-S to give the corresponding Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPhX)-indene)B(C(6)F(5))(4)(-) complexes 6a (X = Ph, 68%) or 6b (X = H, 77%), which feature a newly established S-Si linkage. Compound 6a was observed to effect net C-O bond cleavage in diethyl ether with net loss of Ph(2)Si(OEt)H, affording Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-SEt-indene)B(C(6)F(5))(4)(-) (7) in 77% yield. Furthermore, 6a proved capable of transferring Ph(2)SiH(2) to acetophenone, with concomitant regeneration of 2B(C(6)F(5))(4)(-); however, 2X(-) did not prove to be effective ketone hydrosilylation catalysts. Treatment of 1/3-P(i)Pr(2)-2-S(t)Bu-indene with 0.5 equiv of Cp*RhCl(2) gave CpRh(Cl)(kappa(2)-3-P(i)Pr(2)-2-S-indene) (8) in 94% yield. Combination of 8 and LiB(C(6)F(5))(4) x 2.5 Et(2)O produced the coordinatively unsaturated cation Cp*Rh(kappa(2)-3-P(i)Pr(2)-2-S-indene)B(C(6)F(5))(4)(-) (9B(C(6)F(5))(4)(-)), which was transformed into Cp*Rh(H)(kappa(2)-3-P(i)Pr(2)-2-S(SiHPh(2))-indene)B(C(6)F(5))(4)(-) (10) via net H-Si addition of Ph(2)SiH(2) to Rh-S. Unlike 2X(-), complex 9B(C(6)F(5))(4)(-) was shown to be an effective catalyst for ketone hydrosilylation. Treatment of 3 x CH(3)CN with Ph(2)SiH(2) resulted in the loss of CH(3)CN, along with the formation of Cp*Ir(H)(kappa(2)-3-P(i)Pr(2)-2-S-(1-diphenylsilylindene)) (11) (64% isolated yield) as a mixture of diastereomers. The formation of 11 corresponds to heterolytic H-Si bond activation, involving net addition of H(-) and Ph(2)HSi(+) fragments to Ir and indenide in the unobserved zwitterion 3. Crystallographic data are provided for 1, 2 x COOTf(-), 3 x CH(3)CN, 7, and 11. Collectively, these results demonstrate the versatility of donor-functionalized indene ancillary ligands in allowing for the selection of divergent metal-ligand cooperativity pathways (simply by ancillary ligand deprotonation) in the activation of small molecule substrates.
用1/3 - 二异丙基膦 - 2 - 叔丁基硫代茚处理0.5当量的[CpIrCl₂]₂,以95%的产率得到CpIr(Cl)(κ² - 3 - 二异丙基膦 - 2 - 硫代茚) (1)(Cp* = η⁵ - C₅Me₅)。向1中加入AgOTf或LiB(C₆F₅)₄·2.5 OEt₂,得到[CpIr(κ² - 3 - 二异丙基膦 - 2 - 硫代茚)]⁺X⁻([2]⁺X⁻;X = OTf,产率78%;X = B(C₆F₅)₄,产率82%),它们是可分离的配位不饱和[Cp'Ir(κ² - P,S)]⁺X⁻配合物的首例。将[2]⁺OTf⁻暴露于CO中,以91%的产率得到[2·CO]⁺OTf⁻,而用PMe₃处理[2]⁺B(C₆F₅)₄⁻,以94%的产率生成[2·PMe₃]⁺B(C₆F₅)₄⁻。在CH₃CN中用K₂CO₃处理1,可分离得到不寻常的加合物3·CH₃CN(分离产率41%),其中CH₃CN桥连目标配位不饱和两性离子CpIr(κ² - 3 - 二异丙基膦 - 2 - 硫代茚基) (3)的路易斯酸性CpIr和路易斯碱性茚基片段。与[2·CO]⁺OTf⁻的形成不同,将3·CH₃CN暴露于CO中未得到3·CO;相反,生成了(kappa(2)-3 - 二异丙基膦 - 2 - 硫代茚)Ir(CO)₂ (4)和1,2,3,4 - 四甲基富烯的1:1纯净混合物。用Ph₂SiH₂处理[2]⁺OTf⁻导致净损失Ph₂Si(OTf)H,以44%的产率得到CpIr(H)(κ² - 3 - 二异丙基膦 - 2 - 硫代茚) (5)。相反,用Ph₂SiH₂或PhSiH₃处理[2]⁺B(C₆F₅)₄⁻是通过H - Si加成到Ir - S上进行的,得到相应的[CpIr(H)(κ² - 3 - 二异丙基膦 - 2 - S(SiHPhX) - 茚)]⁺B(C₆F₅)₄⁻配合物6a(X = Ph,产率68%)或6b(X = H,产率77%),它们具有新形成的S - Si键。观察到化合物6a在乙醚中能实现净C - O键裂解,净损失Ph₂Si(OEt)H,以77%的产率得到[CpIr(H)(κ² - 3 - 二异丙基膦 - 2 - SEt - 茚)]⁺B(C₆F₅)₄⁻ (7)。此外,6a被证明能够将Ph₂SiH₂转移到苯乙酮上,同时再生[2]⁺B(C₆F₅)₄⁻;然而,[2]⁺X⁻并未被证明是有效的酮氢化硅烷化催化剂。用0.5当量的[CpRhCl₂]₂处理1/3 - 二异丙基膦 - 2 - 叔丁基硫代茚,以94%的产率得到CpRh(Cl)(κ² - 3 - 二异丙基膦 - 2 - 硫代茚) (8)。8与LiB(C₆F₅)₄·2.5 Et₂O组合生成配位不饱和阳离子[CpRh(κ² - 3 - 二异丙基膦 - 2 - 硫代茚)]⁺B(C₆F₅)₄⁻ ([9]⁺B(C₆F₅)₄⁻),通过将Ph₂SiH₂的净H - Si加成到Rh - S上,将其转化为[CpRh(H)(κ² - 3 - 二异丙基膦 - 2 - S(SiHPh₂) - 茚)]⁺B(C₆F₅)₄⁻ (10)。与[2]⁺X⁻不同,配合物[9]⁺B(C₆F₅)₄⁻被证明是酮氢化硅烷化的有效催化剂。用Ph₂SiH₂处理3·CH₃CN导致CH₃CN损失,同时形成非对映异构体混合物Cp*Ir(H)(κ² - 3 - 二异丙基膦 - 2 - S - (1 - 二苯基硅基茚)) (11)(分离产率64%)。11的形成对应于异裂H - Si键活化,涉及在未观察到的两性离子3中H⁻和Ph₂HSi⁺片段净加成到Ir和茚基上。提供了1、[2·CO]⁺OTf⁻、3·CH₃CN、7和11的晶体学数据。总体而言,这些结果证明了供体官能化茚辅助配体在允许通过简单的辅助配体去质子化选择不同的金属 - 配体协同作用途径以活化小分子底物方面的多功能性。