Sczancoski J C, Cavalcante L S, Joya M R, Espinosa J W M, Pizani P S, Varela J A, Longo E
LIEC, Universidade Federal de São Carlos, Departamento de Química e Física, São Carlos, P.O. Box 676, 13565-905, SP, Brazil.
J Colloid Interface Sci. 2009 Feb 1;330(1):227-36. doi: 10.1016/j.jcis.2008.10.034. Epub 2008 Oct 18.
SrWO(4) powders were synthesized by the co-precipitation method and processed in a microwave-hydrothermal (MH) at 140 degrees C for different times. The obtained powders were analyzed by X-ray diffraction (XRD), micro-Raman (MR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, field-emission gun scanning electron microscopy (FEG-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. XRD patterns and MR spectra showed that the SrWO(4) powders present a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a high absorption band situated at 831.57 cm(-1), which was ascribed to the WO antisymmetric stretching vibrations into the [WO(4)] tetrahedron groups. FEG-SEM micrographs suggested that the processing time is able to influence in the growth process and morphology of SrWO(4) powders. UV-vis absorption spectra revealed different optical band gap values for these powders. A green PL emission at room temperature was verified in SrWO(4) powders when excited with 488 nm wavelength.
通过共沉淀法合成了SrWO(4)粉末,并在140℃下于微波水热(MH)条件下处理不同时间。对所得粉末进行了X射线衍射(XRD)、显微拉曼(MR)光谱、傅里叶变换红外(FT-IR)光谱、场发射枪扫描电子显微镜(FEG-SEM)、紫外可见(UV-vis)吸收光谱和光致发光(PL)测量。XRD图谱和MR光谱表明,SrWO(4)粉末呈现白钨矿型四方结构,不存在有害相。FT-IR光谱在831.57 cm(-1)处显示出一个高吸收带,这归因于[WO(4)]四面体基团中WO的反对称伸缩振动。FEG-SEM显微照片表明,处理时间能够影响SrWO(4)粉末的生长过程和形态。UV-vis吸收光谱揭示了这些粉末不同的光学带隙值。当用488 nm波长激发时,在SrWO(4)粉末中验证了室温下的绿色PL发射。