Suppr超能文献

使用电动增压预富集的高灵敏度毛细管电泳和微芯片电泳。通过计算机建模深入了解堆积机制。

High-sensitivity capillary and microchip electrophoresis using electrokinetic supercharging preconcentration. Insight into the stacking mechanism via computer modeling.

作者信息

Xu Zhongqi, Timerbaev Andrei R, Hirokawa Takeshi

机构信息

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama 1, Higashi-hiroshima 739-8527, Japan.

出版信息

J Chromatogr A. 2009 Jan 23;1216(4):660-70. doi: 10.1016/j.chroma.2008.10.077. Epub 2008 Oct 25.

Abstract

This review discusses recent progress in the application of one of the most effective in-line preconcentration techniques used in electrophoresis in capillaries and microchips, electrokinetic supercharging (EKS). Conventionally considered as a transient isotachophoresis (tITP) step put into effect after the electrokinetic sample injection (EKI), EKS presumes that the electrolyte filled into the capillary (or microchip channel) comprises a co-ion acting as a leading ion to stack the injected analytes. Subsequently, to create the tITP state, one needs an additional injection of a suitable terminating ion. As a resulting increase in sensitivity strongly depends on the performance of both EKS stages, two theoretical sections are focused on hints for proper arrangement of EKI and tITP elaborated by means of computer simulation. In particular, factors affecting the injected amount of analytes, different modes of introducing the sample, suitable combinations of leading and terminating ions, and optimization of supporting electrolyte compositions are discussed with an objective to increase the enrichment factors. A comprehensive coverage of recent EKS applications in capillary and microchip electrophoresis, including metal ions, pharmaceuticals, peptides, DNA fragments, and proteins, demonstrates attainable sensitivity enhancements up to two orders of magnitude. This should make this method exportable to other analytes and facilitate its more widespread use to applications that require low limits of detection.

摘要

本综述讨论了毛细管和微芯片电泳中最有效的在线预浓缩技术之一——电动增压(EKS)的应用进展。传统上,EKS被视为在电动进样(EKI)后实施的瞬态等速电泳(tITP)步骤,它假定填充到毛细管(或微芯片通道)中的电解质包含一种作为前导离子的共离子,用于堆积注入的分析物。随后,为了创建tITP状态,需要额外注入一种合适的终止离子。由于灵敏度的提高强烈依赖于EKS两个阶段的性能,因此两个理论部分重点介绍了通过计算机模拟得出的关于EKI和tITP正确设置的提示。特别是,讨论了影响分析物注入量的因素、引入样品的不同模式、前导离子和终止离子的合适组合以及支持电解质组成的优化,目的是提高富集因子。对EKS在毛细管电泳和微芯片电泳中近期应用的全面涵盖,包括金属离子、药物、肽、DNA片段和蛋白质,表明灵敏度可提高两个数量级。这应使该方法可应用于其他分析物,并有助于其更广泛地应用于需要低检测限的应用中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验