Lopachin Richard M, Geohagen Brian C, Gavin Terrence
Department of Anesthesiology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York 10467, USA.
Toxicol Sci. 2009 Jan;107(1):171-81. doi: 10.1093/toxsci/kfn226. Epub 2008 Nov 7.
4-Hydroxy-2-nonenal (HNE) is an aldehyde by-product of lipid peroxidation that is presumed to play a primary role in certain neuropathogenic states (e.g., Alzheimer disease, spinal cord trauma). Although the molecular mechanism of neurotoxicity is unknown, proteomic analyses (e.g., tandem mass spectrometry) have demonstrated that this soft electrophile preferentially forms Michael-type adducts with cysteine sulfhydryl groups. In this study, we characterized HNE synaptosomal toxicity and evaluated the role of putative nucleophilic amino acid targets. Results show that HNE exposure of striatal synaptosomes inhibited (3)H-dopamine membrane transport and vesicular storage. These concentration-dependent effects corresponded to parallel decreases in synaptosomal sulfhydryl content. Calculations of quantum mechanical parameters (softness, electrophilicity) that describe the interactions of an electrophile with its nucleophilic target indicated that the relative softness of HNE was directly related to both the second-order rate constant (k(2)) for sulfhydryl adduct formation and corresponding neurotoxic potency (IC(50)). Computation of additional quantum mechanical parameters that reflect the relative propensity of a nucleophile to interact with a given electrophile (chemical potential, nucleophilicity) indicated that the sulfhydryl thiolate state was the HNE target. In support of this, we showed that the rate of adduct formation was related to pH and that N-acetyl-L-cysteine, but not N-acetyl-L-lysine or beta-alanyl-L-histidine, reduced in vitro HNE neurotoxicity. These data suggest that, like other type 2 alkenes, HNE produces nerve terminal toxicity by forming adducts with sulfhydryl thiolates on proteins involved in neurotransmission.
4-羟基-2-壬烯醛(HNE)是脂质过氧化的醛类副产物,据推测在某些神经致病状态(如阿尔茨海默病、脊髓损伤)中起主要作用。尽管神经毒性的分子机制尚不清楚,但蛋白质组学分析(如串联质谱)表明,这种软亲电试剂优先与半胱氨酸巯基形成迈克尔型加合物。在本研究中,我们对HNE突触体毒性进行了表征,并评估了假定的亲核氨基酸靶点的作用。结果表明,纹状体突触体暴露于HNE会抑制³H-多巴胺的膜转运和囊泡储存。这些浓度依赖性效应与突触体巯基含量的平行下降相对应。描述亲电试剂与其亲核靶点相互作用的量子力学参数(软度、亲电性)计算表明,HNE的相对软度与巯基加合物形成的二级速率常数(k₂)和相应的神经毒性效力(IC₅₀)直接相关。反映亲核试剂与给定亲电试剂相互作用相对倾向的其他量子力学参数(化学势、亲核性)计算表明,巯基硫醇盐状态是HNE的靶点。为此,我们表明加合物形成速率与pH有关,并且N-乙酰-L-半胱氨酸而非N-乙酰-L-赖氨酸或β-丙氨酰-L-组氨酸可降低体外HNE神经毒性。这些数据表明,与其他2型烯烃一样,HNE通过与参与神经传递的蛋白质上的巯基硫醇盐形成加合物而产生神经末梢毒性。