Suppr超能文献

在法语在线目录中使用多术语索引为健康资源分配医学主题词描述符。

Using multi-terminology indexing for the assignment of MeSH descriptors to health resources in a French online catalogue.

作者信息

Pereira Suzanne, Névéol Aurélie, Kerdelhué Gaétan, Serrot Elisabeth, Joubert Michel, Darmoni Stéfan J

机构信息

CISMeF, LITIS EA 4108, University of Rouen, France.

出版信息

AMIA Annu Symp Proc. 2008 Nov 6;2008:586-90.

Abstract

BACKGROUND

To assist with the development of a French online quality-controlled health gateway(CISMeF), an automatic indexing tool assigning MeSH descriptors to medical text in French was created. The French Multi-Terminology Indexer (FMTI) relies on a multi-terminology approach involving four prominent medical terminologies and the mappings between them.

OBJECTIVE

In this paper,we compare lemmatization and stemming as methods to process French medical text for indexing. We also evaluate the multi-terminology approach implemented in F-MTI.

METHODS

The indexing strategies were assessed on a corpus of 18,814 resources indexed manually.

RESULTS

There is little difference in the indexing performance when lemmatization or stemming is used. However, the multi-terminology approach outperforms indexing relying on a single terminology in terms of recall.

CONCLUSION

F-MTI will soon be used in the CISMeF production environment and in a Health MultiTerminology Server in French.

摘要

背景

为协助开发一个法语在线质量控制的健康网关(CISMeF),创建了一个自动索引工具,用于为法语医学文本分配医学主题词(MeSH)描述符。法语多术语索引器(FMTI)依赖于一种多术语方法,该方法涉及四个突出的医学术语表及其之间的映射。

目的

在本文中,我们比较了词元化和词干提取作为处理法语医学文本以进行索引的方法。我们还评估了F-MTI中实施的多术语方法。

方法

在一个由18814个手动索引的资源组成的语料库上评估索引策略。

结果

使用词元化或词干提取时,索引性能几乎没有差异。然而,在召回率方面,多术语方法优于依赖单一术语的索引。

结论

F-MTI很快将用于CISMeF生产环境和法语健康多术语服务器中。

引用本文的文献

1
ABiMed: An intelligent and visual clinical decision support system for medication reviews and polypharmacy management.
BMC Med Inform Decis Mak. 2025 Apr 23;25(1):173. doi: 10.1186/s12911-025-03002-x.
2
Improving information retrieval with multiple health terminologies in a quality-controlled gateway.
Health Inf Sci Syst. 2013 Feb 4;1:8. doi: 10.1186/2047-2501-1-8. eCollection 2013.
3
Terminology extraction from medical texts in Polish.
J Biomed Semantics. 2014 May 31;5:24. doi: 10.1186/2041-1480-5-24. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验