Suppr超能文献

用于临床放射学报告语义标注的医学短语解析错误校正

Parsing error correction of medical phrases for semantic annotation of clinical radiology reports.

作者信息

Nishimoto Naoki, Terae Satoshi, Uesugi Masahito, Tanikawa Takumi, Endou Akira, Ogasawara Katsuhiko, Sakurai Tsunetaro

机构信息

Department of Medical Informatics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.

出版信息

AMIA Annu Symp Proc. 2008 Nov 6:1070.

Abstract

The purpose of this study is to develop a module for correcting errors in the product of a natural language parser. When tested with 300 CT reports, a total of 604 patterns were generated. The recall and precision was improved to 90.7% and 74.1% after processed by the module from initial 80.5% and 42.8% respectively. This rule-based module will help health care personnel reduce the cost of manual tagging correction for corpus building.

摘要

本研究的目的是开发一个用于纠正自然语言解析器产品中错误的模块。在用300份CT报告进行测试时,总共生成了604个模式。经该模块处理后,召回率和精确率分别从最初的80.5%和42.8%提高到了90.7%和74.1%。这个基于规则的模块将帮助医护人员降低用于语料库构建的人工标注校正成本。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验