Rubino Federico M, Pitton Marco, Caneva Enrico, Pappini Marco, Colombi Antonio
Department of Medicine, Surgery and Odontology, Università degli Studi di Milano, v. A. di Rudinì 8, I-20142 Milano, Italy.
Rapid Commun Mass Spectrom. 2008 Dec;22(23):3935-48. doi: 10.1002/rcm.3810.
The thiol group of cysteine plays a pivotal role in structural and functional biology. We use mass spectrometry to study glutathione-related homo- and heterodimeric disulfides, aiming at understanding the factors affecting the redox potentials of different disulfide/thiol pairs. Several electrospray ionization (ESI)-protonated disulfides of cysteamine, cysteine, penicillamine, N-acetylcysteine, N-acetylpenicillamine, gammaGluCySH, HSCyGly, and glutathione were analyzed on a triple quadrupole instrument to measure their energy-resolved tandem mass spectra. Fission of the disulfide bond yields RSHH(+) and RS(+) ions. The logarithm of the intensity ratio of the RS(+)/RSHH(+) fragments in homodimeric disulfides is proportional to the normal reduction potential of their RSSR/RSH pairs determined by nuclear magnetic resonance (NMR) in solution, the more reducing ones yielding the higher ratios. Also in some R(1)S-SR(2) disulfides, the ratio of the intensities of the RSH + H(+) and RS(+) ions of each participating thiol shows a linear relationship with the Nernst equation potential difference of the corresponding redox pairs. This behavior allows us to measure the redox potentials of some disulfide/thiol pairs by using different thiol-reducing probes of known oxidoreductive potential as reference. To assist understanding of the fission mechanism of the disulfide bond, the fragments tentatively identified as 'sulfenium' were themselves fragmented; accurate mass measurement of the resulting second-generation fragments demonstrated a loss of thioformaldehyde, thus supporting the assigned structure of this elusive intermediate of the oxidative stress pathway. Understanding this fragmentation process allows us to employ this technique with larger molecules to measure by mass spectrometry the micro-redox properties of different disulfide bonds in peptides with catalytic and signaling biological activity.
半胱氨酸的硫醇基团在结构生物学和功能生物学中起着关键作用。我们使用质谱法研究与谷胱甘肽相关的同二聚体和异二聚体二硫化物,旨在了解影响不同二硫键/硫醇对氧化还原电位的因素。在三重四极杆仪器上分析了半胱胺、半胱氨酸、青霉胺、N - 乙酰半胱氨酸、N - 乙酰青霉胺、γ-谷氨酰半胱氨酸、半胱氨酰甘氨酸和谷胱甘肽的几种电喷雾电离(ESI)质子化二硫化物,以测量它们的能量分辨串联质谱。二硫键的断裂产生RSHH(+)和RS(+)离子。同二聚体二硫化物中RS(+)/RSHH(+)碎片强度比的对数与通过溶液中的核磁共振(NMR)测定的其RSSR/RSH对的标准还原电位成正比,还原性越强的二硫化物产生的比值越高。同样在一些R(1)S - SR(2)二硫化物中,每个参与硫醇的RSH + H(+)和RS(+)离子强度比与相应氧化还原对的能斯特方程电位差呈线性关系。这种行为使我们能够使用具有已知氧化还原电位的不同硫醇还原探针作为参考来测量一些二硫键/硫醇对的氧化还原电位。为了有助于理解二硫键的断裂机制,将初步鉴定为“锍鎓离子”的碎片本身进行了碎裂;对所得第二代碎片的精确质量测量表明有硫代甲醛的损失,从而支持了氧化应激途径中这种难以捉摸的中间体的指定结构。理解这种碎裂过程使我们能够将该技术应用于更大的分子,通过质谱法测量具有催化和信号生物学活性的肽中不同二硫键的微氧化还原性质。