Kim InKi, Shu Chih-Wen, Xu Wenjie, Shiau Chung-Wai, Grant Daniel, Vasile Stefan, Cosford Nicholas D P, Reed John C
Burnham Center for Chemical Genomics, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
J Biol Chem. 2009 Jan 16;284(3):1593-603. doi: 10.1074/jbc.M807308200. Epub 2008 Nov 12.
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) is caused by many disease-relevant conditions, inducing conserved signaling events collectively known as the unfolded protein response. When ER stress is excessive or prolonged, cell death (usually occurring by apoptosis) is triggered. We undertook a chemical biology approach for investigating mechanisms of ER stress-induced cell death. Using a cell-based high throughput screening assay to identify compounds that rescued a neuronal cell line from thapsigargin-induced cell death, we identified benzodiazepinones that selectively inhibit cell death caused by inducers of ER stress (thapsigargin and tunicamycin) but not by inducers of extrinsic (tumor necrosis factor) or intrinsic (mitochondrial) cell death pathways. The compounds displayed activity in several cell lines and primary cultured neurons. Mechanism of action studies revealed that these compounds inhibit ER stress-induced activation of p38 MAPK and kinases responsible for c-Jun phosphorylation. Active benzodiazepinones suppressed cell death at the level of apoptotic signal kinase-1 (ASK1) within the IRE1 pathway but without directly inhibiting the kinase activity of ASK1 or >400 other kinases tested. Rather, active compounds enhanced phosphorylation of serine 967 of ASK1, promoting ASK1 binding to 14-3-3, an event associated with suppression of ASK1 function. Reducing ASK1 protein expression using small interfering RNA also protected cells from ER stress-induced apoptosis, confirming the importance of this protein kinase. Taken together, these findings demonstrate an essential role for ASK1 in cell death induced by ER stress. The compounds identified may prove useful for revealing endogenous mechanisms that regulate inhibitory phosphorylation of ASK1.
内质网(ER)中未折叠蛋白的积累是由许多与疾病相关的情况引起的,会引发一系列保守的信号事件,统称为未折叠蛋白反应。当内质网应激过度或持续时间过长时,会触发细胞死亡(通常通过凋亡发生)。我们采用化学生物学方法来研究内质网应激诱导的细胞死亡机制。利用基于细胞的高通量筛选试验来鉴定能使神经元细胞系从毒胡萝卜素诱导的细胞死亡中获救的化合物,我们鉴定出了苯并二氮杂䓬酮,它们能选择性地抑制内质网应激诱导剂(毒胡萝卜素和衣霉素)引起的细胞死亡,但不能抑制外源性(肿瘤坏死因子)或内源性(线粒体)细胞死亡途径诱导剂引起的细胞死亡。这些化合物在几种细胞系和原代培养神经元中均表现出活性。作用机制研究表明,这些化合物抑制内质网应激诱导的p38丝裂原活化蛋白激酶(MAPK)以及负责c-Jun磷酸化的激酶的激活。活性苯并二氮杂䓬酮在IRE1途径内的凋亡信号激酶-1(ASK1)水平上抑制细胞死亡,但不直接抑制ASK1或其他400多种测试激酶的激酶活性。相反地,活性化合物增强了ASK1丝氨酸967位点的磷酸化,促进ASK1与14-3-3结合,这一事件与ASK1功能的抑制有关。使用小干扰RNA降低ASK1蛋白表达也能保护细胞免受内质网应激诱导的凋亡,证实了这种蛋白激酶的重要性。综上所述,这些发现证明了ASK1在内质网应激诱导的细胞死亡中起关键作用。所鉴定出的化合物可能有助于揭示调节ASK1抑制性磷酸化的内源性机制。