Cremer Dieter, Kraka Elfi, Filatov Michael
Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
Chemphyschem. 2008 Dec 1;9(17):2510-21. doi: 10.1002/cphc.200800510.
Bond dissociation energies (BDEs) of neutral HgX and cationic HgX(+) molecules range from less than a kcal mol(-1) to as much as 60 kcal mol(-1). Using NESC/CCSD(T) [normalized elimination of the small component and coupled-cluster theory with all single and double excitations and a perturbative treatment of the triple excitations] in combination with triple-zeta basis sets, bonding in 28 mercury molecules HgX (X = H, Li, Na, K, Rb, CH(3), SiH(3), GeH(3), SnH(3), NH(2), PH(2), AsH(2), SbH(2), OH, SH, SeH, TeH, O, S, Se, Te, F, Cl, Br, I, CN, CF(3), OCF(3)) and their corresponding 28 cations is investigated. Mercury undergoes weak covalent bonding with its partner X in most cases (exceptions: X = alkali atoms, which lead to van der Waals bonding) although the BDEs are mostly smaller than 12 kcal mol(-1). Bonding is weakened by 1) a singly occupied destabilized sigma*-HOMO and 2) lone pair repulsion. The magnitude of sigma*-destabilization can be determined from the energy difference BDE(HgX)-BDE(HgX(+)), which is largest for bonding partners from groups IVb and Vb of the periodic table (up to 80 kcal mol(-1)). BDEs can be enlarged by charge transfer from Hg and increased HgX ionic bonding, provided the bonding partner of Hg is sufficiently electronegative. The fine-tuning of covalent and ionic bonding, sigma-destabilization, and lone-pair repulsion occurs via relativistic effects where 6s AO contraction and 5d AO expansion are decisive. Lone pair repulsion involving the mercury 5d AOs plays an important role in the case of some mercury chalcogenides HgE (E = O, Te) where it leads to (3)Pi rather than (1)Sigma(+) ground states. However, both HgE((3)Pi) and HgE((1)Sigma(+)) should not be experimentally detectable under normal conditions, which is in contrast to experimental predictions suggesting BDE values for HgE between 30 and 53 kcal mol(-1). The results of this work are discussed with regard to their relevance for mercury bonding in general, the chemistry of mercury, and reactions of elemental Hg in the atmosphere.
中性HgX分子和阳离子HgX(+)分子的键解离能(BDEs)范围从小于1千卡摩尔⁻¹到高达60千卡摩尔⁻¹。使用NESC/CCSD(T) [归一化消除小分量并结合所有单激发和双激发以及三激发微扰处理的耦合簇理论] 并结合三重ζ基组,对28种汞分子HgX(X = H、Li、Na、K、Rb、CH₃、SiH₃、GeH₃、SnH₃、NH₂、PH₂、AsH₂、SbH₂、OH、SH、SeH、TeH、O、S、Se、Te、F、Cl、Br、I、CN、CF₃、OCF₃)及其相应的28种阳离子中的键合进行了研究。在大多数情况下,汞与其配位体X形成弱共价键(例外情况:X = 碱金属原子,形成范德华键),尽管键解离能大多小于12千卡摩尔⁻¹。键合会因以下因素而减弱:1)一个单占据的不稳定σ* - 最高占据分子轨道(HOMO);2)孤对电子排斥。σ* - 不稳定的程度可以通过键解离能差值BDE(HgX) - BDE(HgX(+))来确定,对于元素周期表中第IVb族和Vb族的配位体,该差值最大(高达80千卡摩尔⁻¹)。如果汞的配位体具有足够的电负性,电荷从汞转移以及汞 - X离子键的增加可以增大键解离能。共价键和离子键、σ - 不稳定以及孤对电子排斥的微调是通过相对论效应发生的,其中6s原子轨道收缩和5d原子轨道扩展起决定性作用。在一些汞硫属化合物HgE(E = O、Te)的情况下,涉及汞5d原子轨道的孤对电子排斥起重要作用,它导致基态为(3)π而非(1)σ⁺。然而,在正常条件下,HgE((3)π)和HgE((1)σ⁺)都不应是实验可检测到的,这与实验预测表明HgE的键解离能值在30至53千卡摩尔⁻¹之间形成对比。本文工作的结果就其与汞键合的一般相关性、汞的化学性质以及大气中元素汞的反应进行了讨论。