Suppr超能文献

经历滑移的轻微变形胶体球的平移和旋转

Translation and rotation of slightly deformed colloidal spheres experiencing slip.

作者信息

Chang Yu C, Keh Huan J

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, Republic of China.

出版信息

J Colloid Interface Sci. 2009 Feb 1;330(1):201-10. doi: 10.1016/j.jcis.2008.10.055. Epub 2008 Oct 25.

Abstract

The steady translation and rotation of a rigid, slightly deformed colloidal sphere in arbitrary directions in a viscous fluid are analyzed in the limit of small Reynolds number. The fluid is allowed to slip frictionally at the surface of the particle, and the Stokes equations are solved asymptotically using a method of perturbed expansions. To the second order in the small parameter characterizing the deformation of the particle from the spherical shape, the resistance problem is formulated for the general case and explicit expressions for the hydrodynamic drag force and torque exerted on the particle are obtained for the special cases of prolate and oblate spheroids. The agreement between our asymptotic results for a slip-surface spheroid and the relevant exact solutions in the literature is very good, even if the particle deformation from the spherical shape is not very small. As expected, the second-order expansions for the translational and rotational resistances in powers of the small deformation parameter make better consistency with the available exact results than the first-order expansions do. Depending on the value of the slip parameter, the hydrodynamic drag force and torque acting on a moving spheroid normalized by the corresponding values for a spherical particle with equal equatorial radius are not necessarily monotonic functions of the aspect ratio of the spheroid. Noticeable behavior of the drag force and torque is grasped in the second-order expansions; e.g., the torque exerted on a perfect-slip rotating spheroid is not necessarily zero. For a moving spheroid with a fixed aspect ratio, its normalized hydrodynamic drag force and torque decrease monotonically with an increase in the slip capability of the particle.

摘要

在小雷诺数极限下,分析了粘性流体中刚性、轻微变形的胶体球在任意方向上的稳定平移和旋转。允许流体在颗粒表面产生摩擦滑移,并使用微扰展开法渐近求解斯托克斯方程。对于表征颗粒从球形变形的小参数的二阶情况,针对一般情况提出了阻力问题,并针对长椭球体和扁椭球体的特殊情况,得到了作用在颗粒上的流体动力阻力和扭矩的显式表达式。即使颗粒从球形的变形不是很小,我们对于滑移面球体的渐近结果与文献中的相关精确解之间的一致性也非常好。正如预期的那样,以小变形参数的幂次表示的平移和旋转阻力的二阶展开比一阶展开与可用精确结果的一致性更好。根据滑移参数的值,由具有相等赤道半径的球形颗粒的相应值归一化的作用在运动椭球体上的流体动力阻力和扭矩不一定是椭球体纵横比的单调函数。在二阶展开中可以把握阻力和扭矩的显著行为;例如,作用在完全滑移旋转椭球体上的扭矩不一定为零。对于具有固定纵横比的运动椭球体,其归一化的流体动力阻力和扭矩随着颗粒滑移能力的增加而单调减小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验