Suppr超能文献

五个大型队列中前列腺特异性抗原随时间变化的决定因素及其与前列腺癌外照射放疗后复发的关联

Determinants of change in prostate-specific antigen over time and its association with recurrence after external beam radiation therapy for prostate cancer in five large cohorts.

作者信息

Proust-Lima Cécile, Taylor Jeremy M G, Williams Scott G, Ankerst Donna P, Liu Ning, Kestin Larry L, Bae Kyounghwa, Sandler Howard M

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Int J Radiat Oncol Biol Phys. 2008 Nov 1;72(3):782-91. doi: 10.1016/j.ijrobp.2008.01.056.

Abstract

PURPOSE

To assess the relationship between prognostic factors, postradiation prostate-specific antigen (PSA) dynamics, and clinical failure after prostate cancer radiation therapy using contemporary statistical models.

METHODS AND MATERIALS

Data from 4,247 patients with 40,324 PSA measurements treated with external beam radiation monotherapy in five cohorts were analyzed. Temporal change of PSA after treatment completion was described by a specially developed linear mixed model that included standard prognostic factors. These factors, along with predicted PSA evolution, were incorporated into a Cox model to establish their predictive value for the risk of clinical recurrence over time.

RESULTS

Consistent relationships were found across cohorts. The initial PSA decline after radiation therapy was associated with baseline PSA and T-stage (p < 0.001). The long-term PSA rise was associated with baseline PSA, T-stage, and Gleason score (p < 0.001). The risk of clinical recurrence increased with current level (p < 0.001) and current slope of PSA (p < 0.001). In a pooled analysis, higher doses of radiation were associated with a lower long-term PSA rise (p < 0.001) but not with the risk of recurrence after adjusting for PSA trajectory (p = 0.63). Conversely, after adjusting for other factors, increased age at diagnosis was not associated with long-term PSA rise (p = 0.85) but was directly associated with decreased risk of recurrence (p < 0.001).

CONCLUSIONS

We conclude that a linear mixed model can be reliably used to construct typical patient PSA profiles after prostate cancer radiation therapy. Pretreatment factors along with PSA evolution and the associated risk of recurrence provide an efficient and quantitative way to assess the impact of risk factors on disease progression.

摘要

目的

使用当代统计模型评估前列腺癌放射治疗后预后因素、放疗后前列腺特异性抗原(PSA)动态变化与临床失败之间的关系。

方法和材料

分析了来自五个队列中4247例接受外照射单一疗法治疗的患者的40324次PSA测量数据。通过一个专门开发的线性混合模型描述治疗完成后PSA的时间变化,该模型纳入了标准预后因素。这些因素以及预测的PSA演变情况被纳入Cox模型,以确定它们对随时间临床复发风险的预测价值。

结果

各队列中发现了一致的关系。放疗后最初的PSA下降与基线PSA和T分期相关(p<0.001)。长期的PSA上升与基线PSA、T分期和 Gleason评分相关(p<0.001)。临床复发风险随当前PSA水平(p<0.001)和当前PSA斜率(p<0.001)增加。在一项汇总分析中,更高剂量的放疗与更低的长期PSA上升相关(p<0.001),但在调整PSA轨迹后与复发风险无关(p=0.63)。相反,在调整其他因素后,诊断时年龄增加与长期PSA上升无关(p=0.85),但与复发风险降低直接相关(p<0.001)。

结论

我们得出结论,线性混合模型可可靠地用于构建前列腺癌放射治疗后典型患者的PSA曲线。治疗前因素以及PSA演变情况和相关的复发风险提供了一种有效且定量的方法来评估风险因素对疾病进展的影响。

相似文献

2
Prostate cancer and radiation therapy--the message conveyed by serum prostate-specific antigen.
Int J Radiat Oncol Biol Phys. 1995 Aug 30;33(1):23-35. doi: 10.1016/0360-3016(95)00154-Q.
8
Prostate specific antigen as an outcome variable for T1 and T2 prostate cancer treated by radiation therapy.
J Urol. 1994 Nov;152(5 Pt 2):1786-91. doi: 10.1016/s0022-5347(17)32386-8.

引用本文的文献

1
Development of a novel risk model to predict CRPC progression following IMRT: Implications for tailoring treatment intensity.
BJUI Compass. 2025 Sep 7;6(9):e70074. doi: 10.1002/bco2.70074. eCollection 2025 Sep.
2
Joint models for dynamic prediction in localised prostate cancer: a literature review.
BMC Med Res Methodol. 2022 Sep 19;22(1):245. doi: 10.1186/s12874-022-01709-3.
3
Impact of age on treatment response in men with prostate cancer treated with radiotherapy.
BJUI Compass. 2021 Dec 27;3(3):243-250. doi: 10.1002/bco2.132. eCollection 2022 May.
6
Surrogate endpoints in early prostate cancer research.
Transl Androl Urol. 2018 Jun;7(3):472-482. doi: 10.21037/tau.2018.05.10.
8
Joint partially linear model for longitudinal data with informative drop-outs.
Biometrics. 2017 Mar;73(1):72-82. doi: 10.1111/biom.12566. Epub 2016 Aug 1.
10
Joint modelling of longitudinal and multi-state processes: application to clinical progressions in prostate cancer.
Stat Med. 2016 Sep 30;35(22):3933-48. doi: 10.1002/sim.6972. Epub 2016 Apr 18.

本文引用的文献

1
Use of individual fraction size data from 3756 patients to directly determine the alpha/beta ratio of prostate cancer.
Int J Radiat Oncol Biol Phys. 2007 May 1;68(1):24-33. doi: 10.1016/j.ijrobp.2006.12.036.
4
Increasing external beam dose for T1-T2 prostate cancer: effect on risk groups.
Int J Radiat Oncol Biol Phys. 2006 Jul 15;65(4):975-81. doi: 10.1016/j.ijrobp.2006.02.043. Epub 2006 Jun 5.
6
Predictors of prostate cancer-specific mortality after radical prostatectomy or radiation therapy.
J Clin Oncol. 2005 Oct 1;23(28):6992-8. doi: 10.1200/JCO.2005.01.2906.
8
Toxicity after three-dimensional radiotherapy for prostate cancer on RTOG 9406 dose Level V.
Int J Radiat Oncol Biol Phys. 2005 Jul 1;62(3):706-13. doi: 10.1016/j.ijrobp.2004.11.028.
10
Individualized predictions of disease progression following radiation therapy for prostate cancer.
J Clin Oncol. 2005 Feb 1;23(4):816-25. doi: 10.1200/JCO.2005.12.156.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验