Beil Michael, Lück Sebastian, Fleischer Frank, Portet Stéphanie, Arendt Wolfgang, Schmidt Volker
Department of Internal Medicine I, University Hospital Ulm, D-89070 Ulm, Germany.
J Theor Biol. 2009 Feb 21;256(4):518-32. doi: 10.1016/j.jtbi.2008.09.044. Epub 2008 Oct 29.
Keratin intermediate filament networks are part of the cytoskeleton in epithelial cells. They were found to regulate viscoelastic properties and motility of cancer cells. Due to unique biochemical properties of keratin polymers, the knowledge of the mechanisms controlling keratin network formation is incomplete. A combination of deterministic and stochastic modeling techniques can be a valuable source of information since they can describe known mechanisms of network evolution while reflecting the uncertainty with respect to a variety of molecular events. We applied the concept of piecewise-deterministic Markov processes to the modeling of keratin network formation with high spatiotemporal resolution. The deterministic component describes the diffusion-driven evolution of a pool of soluble keratin filament precursors fueling various network formation processes. Instants of network formation events are determined by a stochastic point process on the time axis. A probability distribution controlled by model parameters exercises control over the frequency of different mechanisms of network formation to be triggered. Locations of the network formation events are assigned dependent on the spatial distribution of the soluble pool of filament precursors. Based on this modeling approach, simulation studies revealed that the architecture of keratin networks mostly depends on the balance between filament elongation and branching processes. The spatial distribution of network mesh size, which strongly influences the mechanical characteristics of filament networks, is modulated by lateral annealing processes. This mechanism which is a specific feature of intermediate filament networks appears to be a major and fast regulator of cell mechanics.
角蛋白中间丝网络是上皮细胞细胞骨架的一部分。人们发现它们可调节癌细胞的粘弹性特性和运动性。由于角蛋白聚合物具有独特的生化特性,目前关于控制角蛋白网络形成机制的认识尚不完整。确定性建模技术与随机建模技术相结合可能是有价值的信息来源,因为它们既能描述网络演化的已知机制,又能反映各种分子事件的不确定性。我们将分段确定性马尔可夫过程的概念应用于具有高时空分辨率的角蛋白网络形成建模。确定性部分描述了为各种网络形成过程提供燃料的可溶性角蛋白丝前体池的扩散驱动演化。网络形成事件的瞬间由时间轴上的随机点过程确定。由模型参数控制的概率分布控制着要触发的不同网络形成机制的频率。网络形成事件的位置根据丝前体可溶性池的空间分布来确定。基于这种建模方法,模拟研究表明,角蛋白网络的结构主要取决于丝伸长和分支过程之间的平衡。强烈影响丝网络力学特性的网络网格大小的空间分布受横向退火过程调节。这种作为中间丝网络特定特征的机制似乎是细胞力学的主要且快速的调节因子。