Suppr超能文献

使用TriTISA预测微生物基因组的翻译起始位点。

Prediction of translation initiation site for microbial genomes with TriTISA.

作者信息

Hu Gang-Qing, Zheng Xiaobin, Zhu Huai-Qiu, She Zhen-Su

机构信息

State Key Lab for Turbulence and Complex Systems, Department of Biomedical Engineering, College of Engineering and Center for Theoretical Biology, Peking University, Beijing 100871, China.

出版信息

Bioinformatics. 2009 Jan 1;25(1):123-5. doi: 10.1093/bioinformatics/btn576. Epub 2008 Nov 10.

Abstract

UNLABELLED

We report a new and simple method, TriTISA, for accurate prediction of translation initiation site (TIS) of microbial genomes. TriTISA classifies all candidate TISs into three categories based on evolutionary properties, and characterizes them in terms of Markov models. Then, it employs a Bayesian methodology for the selection of true TIS with a non-supervised, iterative procedure. Assessment on experimentally verified TIS data shows that TriTISA is overall better than all other methods of the state-of-the-art for microbial genome TIS prediction. In particular, TriTISA is shown to have a robust accuracy independent of the quality of initial annotation.

AVAILABILITY

The C++ source code is freely available under the GNU GPL license via http://mech.ctb.pku.edu.cn/protisa/TriTISA.

摘要

未标注

我们报告了一种新的简单方法——TriTISA,用于准确预测微生物基因组的翻译起始位点(TIS)。TriTISA根据进化特性将所有候选TIS分为三类,并通过马尔可夫模型对其进行表征。然后,它采用贝叶斯方法,通过无监督的迭代过程来选择真正的TIS。对经实验验证的TIS数据的评估表明,在微生物基因组TIS预测方面,TriTISA总体上优于所有其他最新方法。特别是,TriTISA显示出具有与初始注释质量无关的稳健准确性。

可用性

C++源代码可通过http://mech.ctb.pku.edu.cn/protisa/TriTISA在GNU GPL许可下免费获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验