Suppr超能文献

内质网蛋白29(ERp29)的C末端结构域介导多瘤病毒的结合、解折叠及感染。

The C-terminal domain of ERp29 mediates polyomavirus binding, unfolding, and infection.

作者信息

Rainey-Barger Emily K, Mkrtchian Souren, Tsai Billy

机构信息

Department of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Rm. 3043, Ann Arbor, MI 48109, USA.

出版信息

J Virol. 2009 Feb;83(3):1483-91. doi: 10.1128/JVI.02057-08. Epub 2008 Nov 19.

Abstract

Penetration of the endoplasmic reticulum (ER) membrane by polyomavirus (PyV) is a decisive step in virus entry. We showed previously that the ER-resident factor ERp29 induces the local unfolding of PyV to initiate the ER membrane penetration process. ERp29 contains an N-terminal thioredoxin domain (NTD) that mediates its dimerization and a novel C-terminal all-helical domain (CTD) whose function is unclear. The NTD-mediated dimerization of ERp29 is critical for its unfolding activity; whether the CTD plays any role in PyV unfolding is unknown. We now show that three hydrophobic residues within the last helix of the ERp29 CTD that were individually mutated to either lysine or alanine abolished ERp29's ability to stimulate PyV unfolding and infection. This effect was not due to global misfolding of the mutant proteins, as they dimerize and do not form aggregates or display increased protease sensitivity. Moreover, the mutant proteins stimulated secretion of the secretory protein thyroglobulin with an efficiency similar to that of wild-type ERp29. Using a cross-linking coimmunoprecipitation assay, we found that the physical interaction of the ERp29 CTD mutants with PyV is inefficient. Our data thus demonstrate that the ERp29 CTD plays a crucial role in PyV unfolding and infection, likely by serving as part of a substrate-binding domain.

摘要

多瘤病毒(PyV)穿透内质网(ER)膜是病毒进入过程中的决定性步骤。我们之前表明,内质网驻留因子ERp29诱导PyV局部解折叠以启动内质网膜穿透过程。ERp29包含一个介导其二聚化的N端硫氧还蛋白结构域(NTD)和一个功能尚不清楚的新型C端全螺旋结构域(CTD)。ERp29的NTD介导的二聚化对其解折叠活性至关重要;CTD在PyV解折叠中是否起作用尚不清楚。我们现在表明,ERp29 CTD最后一个螺旋内的三个疏水残基分别突变为赖氨酸或丙氨酸后,消除了ERp29刺激PyV解折叠和感染的能力。这种效应不是由于突变蛋白的整体错误折叠,因为它们会二聚化,不会形成聚集体或表现出增加的蛋白酶敏感性。此外,突变蛋白刺激分泌蛋白甲状腺球蛋白分泌的效率与野生型ERp29相似。使用交联共免疫沉淀试验,我们发现ERp29 CTD突变体与PyV的物理相互作用效率低下。因此,我们的数据表明,ERp29 CTD在PyV解折叠和感染中起关键作用,可能是作为底物结合结构域的一部分。

相似文献

1
The C-terminal domain of ERp29 mediates polyomavirus binding, unfolding, and infection.
J Virol. 2009 Feb;83(3):1483-91. doi: 10.1128/JVI.02057-08. Epub 2008 Nov 19.
2
Dimerization of ERp29, a PDI-like protein, is essential for its diverse functions.
Mol Biol Cell. 2007 Apr;18(4):1253-60. doi: 10.1091/mbc.e06-11-1004. Epub 2007 Jan 31.
3
A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection.
J Virol. 2011 Mar;85(5):2386-96. doi: 10.1128/JVI.01855-10. Epub 2010 Dec 15.
4
ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding.
Mol Cell. 2005 Oct 28;20(2):289-300. doi: 10.1016/j.molcel.2005.08.034.
5
Biophysical characterization of ERp29. Evidence for a key structural role of cysteine 125.
J Biol Chem. 2005 Apr 8;280(14):13529-37. doi: 10.1074/jbc.M410889200. Epub 2004 Nov 30.
6
ERp29 is an essential endoplasmic reticulum factor regulating secretion of thyroglobulin.
Biochem Biophys Res Commun. 2006 Feb 10;340(2):617-24. doi: 10.1016/j.bbrc.2005.12.052. Epub 2005 Dec 19.
8
The KDEL receptor has a role in the biogenesis and trafficking of the epithelial sodium channel (ENaC).
J Biol Chem. 2019 Nov 29;294(48):18324-18336. doi: 10.1074/jbc.RA119.008331. Epub 2019 Oct 25.
9
Identification of ERp29, an endoplasmic reticulum lumenal protein, as a new member of the thyroglobulin folding complex.
J Biol Chem. 2002 May 10;277(19):17009-15. doi: 10.1074/jbc.M200539200. Epub 2002 Mar 7.
10
A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane.
J Virol. 2007 Dec;81(23):12996-3004. doi: 10.1128/JVI.01037-07. Epub 2007 Sep 19.

引用本文的文献

1
Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition.
Front Mol Biosci. 2022 Sep 26;9:975570. doi: 10.3389/fmolb.2022.975570. eCollection 2022.
2
The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec.
J Biol Chem. 2019 May 3;294(18):7177-7193. doi: 10.1074/jbc.RA118.005659. Epub 2019 Mar 15.
4
How Polyomaviruses Exploit the ERAD Machinery to Cause Infection.
Viruses. 2016 Aug 29;8(9):242. doi: 10.3390/v8090242.
6
Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer.
FEBS Open Bio. 2015 Jan 30;5:91-8. doi: 10.1016/j.fob.2015.01.004. eCollection 2015.
10
A PDI family network acts distinctly and coordinately with ERp29 to facilitate polyomavirus infection.
J Virol. 2011 Mar;85(5):2386-96. doi: 10.1128/JVI.01855-10. Epub 2010 Dec 15.

本文引用的文献

2
A chaperone-activated nonenveloped virus perforates the physiologically relevant endoplasmic reticulum membrane.
J Virol. 2007 Dec;81(23):12996-3004. doi: 10.1128/JVI.01037-07. Epub 2007 Sep 19.
3
Penetration of nonenveloped viruses into the cytoplasm.
Annu Rev Cell Dev Biol. 2007;23:23-43. doi: 10.1146/annurev.cellbio.23.090506.123454.
5
Dimerization of ERp29, a PDI-like protein, is essential for its diverse functions.
Mol Biol Cell. 2007 Apr;18(4):1253-60. doi: 10.1091/mbc.e06-11-1004. Epub 2007 Jan 31.
6
Downregulation of protein disulfide isomerase inhibits infection by the mouse polyomavirus.
J Virol. 2006 Nov;80(21):10868-70. doi: 10.1128/JVI.01117-06. Epub 2006 Aug 23.
7
Protein disulfide isomerase-like proteins play opposing roles during retrotranslocation.
J Cell Biol. 2006 Jun 19;173(6):853-9. doi: 10.1083/jcb.200602046.
8
Structural elucidation of the PDI-related chaperone Wind with the help of mutants.
Acta Crystallogr D Biol Crystallogr. 2006 Jun;62(Pt 6):589-94. doi: 10.1107/S0907444906010456. Epub 2006 May 12.
9
ERp29 is an essential endoplasmic reticulum factor regulating secretion of thyroglobulin.
Biochem Biophys Res Commun. 2006 Feb 10;340(2):617-24. doi: 10.1016/j.bbrc.2005.12.052. Epub 2005 Dec 19.
10
ERp29 triggers a conformational change in polyomavirus to stimulate membrane binding.
Mol Cell. 2005 Oct 28;20(2):289-300. doi: 10.1016/j.molcel.2005.08.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验