Bathellier Camille, Tcherkez Guillaume, Bligny Richard, Gout Elizabeth, Cornic Gabriel, Ghashghaie Jaleh
Laboratoire d'Ecologie, Systématique et Evolution (ESE), CNRS-UMR 8079 - IFR 87, Bâtiment 362, Université Paris-Sud, 91405-Orsay Cedex, France;Plateforme Métabolisme-Métabolome, IFR87 La Plante et son Environnement, Institut de Biotechnologie des Plantes, Bâtiment 630, Université Paris-Sud, 91405-Orsay Cedex, France;Laboratoire de Physiologie Cellulaire Végétale CEA-Grenoble 17, rue des Martyrs, 38054 Grenoble Cedex 9, France.
New Phytol. 2009 Jan;181(2):387-399. doi: 10.1111/j.1469-8137.2008.02679.x.
Root respiration is a major contributor to soil CO2 efflux, and thus an important component of ecosystem respiration. But its metabolic origin, in relation to the carbon isotope composition (delta13C), remains poorly understood. Here, 13C analysis was conducted on CO2 and metabolites under typical conditions or under continuous darkness in French bean (Phaseolus vulgaris) roots. 13C contents were measured either under natural abundance or following pulse-chase labeling with 13C-enriched glucose or pyruvate, using isotope ratio mass spectrometer (IRMS) and nuclear magnetic resonance (NMR) techniques. In contrast to leaves, no relationship was found between the respiratory quotient and the delta13C of respired CO2, which stayed constant at a low value (c. -27.5 per thousand) under continuous darkness. With labeling experiments, it is shown that such a pattern is explained by the 13C-depleting effect of the pentose phosphate pathway; and the involvement of the Krebs cycle fueled by either the glycolytic input or the lipid/protein recycling. The anaplerotic phosphoenolpyruvate carboxylase (PEPc) activity sustained glutamic acid (Glu) synthesis, with no net effect on respired CO2. These results indicate that the root delta13C signal does not depend on the availability of root respiratory substrates and it is thus plausible that, unless the 13C photosynthetic fractionation varies at the leaf level, the root delta13C signal hardly changes under a range of natural environmental conditions.
根系呼吸是土壤二氧化碳排放的主要贡献者,因此也是生态系统呼吸的重要组成部分。但其与碳同位素组成(δ13C)相关的代谢起源仍知之甚少。在此,对菜豆(Phaseolus vulgaris)根系在典型条件下或持续黑暗条件下的二氧化碳和代谢产物进行了13C分析。使用同位素比率质谱仪(IRMS)和核磁共振(NMR)技术,在自然丰度下或用富含13C的葡萄糖或丙酮酸进行脉冲追踪标记后测量13C含量。与叶片不同,呼吸商与呼出二氧化碳的δ13C之间未发现相关性,在持续黑暗条件下,呼出二氧化碳的δ13C保持在较低值(约-27.5‰)不变。通过标记实验表明,这种模式是由磷酸戊糖途径的13C消耗效应以及由糖酵解输入或脂质/蛋白质循环提供燃料的三羧酸循环的参与所解释的。回补磷酸烯醇式丙酮酸羧化酶(PEPc)的活性维持了谷氨酸(Glu)的合成,对呼出的二氧化碳没有净影响。这些结果表明,根系δ13C信号不依赖于根系呼吸底物的可用性,因此可以推测,除非叶片水平的13C光合分馏发生变化,否则在一系列自然环境条件下,根系δ13C信号几乎不会改变。