Suppr超能文献

可视化小鼠视交叉上核和外周昼夜节律计时系统中的时差反应。

Visualizing jet lag in the mouse suprachiasmatic nucleus and peripheral circadian timing system.

作者信息

Davidson Alec J, Castanon-Cervantes Oscar, Leise Tanya L, Molyneux Penny C, Harrington Mary E

机构信息

Circadian Rhythms and Sleep Disorders Program, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA.

出版信息

Eur J Neurosci. 2009 Jan;29(1):171-80. doi: 10.1111/j.1460-9568.2008.06534.x. Epub 2008 Nov 21.

Abstract

Circadian rhythms regulate most physiological processes. Adjustments to circadian time, called phase shifts, are necessary following international travel and on a more frequent basis for individuals who work non-traditional schedules such as rotating shifts. As the disruption that results from frequent phase shifts is deleterious to both animals and humans, we sought to better understand the kinetics of resynchronization of the mouse circadian system to one of the most disruptive phase shifts, a 6-h phase advance. Mice bearing a luciferase reporter gene for mPer2 were subjected to a 6-h advance of the light cycle and molecular rhythms in suprachiasmatic nuclei (SCN), thymus, spleen, lung and esophagus were measured periodically for 2 weeks following the shift. For the SCN, the master pacemaker in the brain, we employed high-resolution imaging of the brain slice to describe the resynchronization of rhythms in single SCN neurons during adjustment to the new light cycle. We observed significant differences in shifting kinetics among mice, among organs such as the spleen and lung, and importantly among neurons in the SCN. The phase distribution among all Period2-expressing SCN neurons widened on the day following a shift of the light cycle, which was partially due to cells in the ventral SCN exhibiting a larger initial phase shift than cells in the dorsal SCN. There was no clear delineation of ventral and dorsal regions, however, as the SCN appear to have a population of fast-shifting cells whose anatomical distribution is organized in a ventral-dorsal gradient. Full resynchronization of the SCN and peripheral timing system, as measured by a circadian reporter gene, did not occur until after 8 days in the advanced light cycle.

摘要

昼夜节律调节着大多数生理过程。在进行国际旅行后,以及对于那些从事非传统工作时间表(如轮班工作)的人来说,更频繁地进行昼夜时间调整(称为相位偏移)是必要的。由于频繁的相位偏移所导致的干扰对动物和人类都有害,我们试图更好地了解小鼠昼夜节律系统重新同步到最具干扰性的相位偏移之一(提前6小时)的动力学过程。携带mPer2荧光素酶报告基因的小鼠接受了6小时的光周期提前处理,并在转换后的2周内定期测量视交叉上核(SCN)、胸腺、脾脏、肺和食管中的分子节律。对于大脑中的主起搏器SCN,我们采用脑片的高分辨率成像来描述在适应新光周期过程中单个SCN神经元节律的重新同步。我们观察到小鼠之间、脾脏和肺等器官之间,以及重要的是SCN中的神经元之间在偏移动力学上存在显著差异。在光周期转换后的第二天,所有表达Period2的SCN神经元的相位分布变宽,这部分是由于腹侧SCN中的细胞比背侧SCN中的细胞表现出更大的初始相位偏移。然而,腹侧和背侧区域并没有明显的划分,因为SCN似乎有一群快速偏移的细胞,其解剖分布呈腹侧-背侧梯度排列。通过昼夜报告基因测量,直到在提前的光周期中8天后,SCN和外周计时系统才完全重新同步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验