García-Fernández P, García-Canales L, García-Lastra J M, Junquera J, Moreno M, Aramburu J A
Departamento de Ciencias de la Tierra y Fisica de la Materia Condensada, Universidad de Cantabria, 39005 Santander, Spain.
J Chem Phys. 2008 Sep 28;129(12):124313. doi: 10.1063/1.2980053.
The microscopic origin and quantum effects of the low barrier hydrogen bond (LBHB) in the proton-bound ammonia dimer cation N(2)H(7) (+) were studied by means of ab initio and density-functional theory (DFT) methods. These results were analyzed in the framework of vibronic theory and compared to those obtained for the Zundel cation H(5)O(2) (+). All geometry optimizations carried out using wavefunction-based methods [Hartree-Fock, second and fourth order Moller-Plesset theory (MP2 and MP4), and quadratic configuration interaction with singles and doubles excitations (QCISD)] lead to an asymmetrical H(3)N-H(+)cdots, three dots, centeredNH(3) conformation (C(3v) symmetry) with a small energy barrier (1.26 kcalmol in MP4 and QCISD calculations) between both equivalent minima. The value of this barrier is underestimated in DFT calculations particularly at the local density approximation level where geometry optimization leads to a symmetric H(3)Ncdots, three dots, centeredH(+)cdots, three dots, centeredNH(3) structure (D(3d) point group). The instability of the symmetric D(3d) structure is shown to originate from the pseudo-Jahn-Teller mixing of the electronic (1)A(1g) ground state with five low lying excited states of A(2u) symmetry through the asymmetric alpha(2u) vibrational mode. A molecular orbital study of the pseudo-Jahn-Teller coupling has allowed us to discuss the origin of the proton displacement and the LBHB formation in terms of the polarization of the NH(3) molecules and the transfer of electronic charge between the proton and the NH(3) units (rebonding). The parallel study of the H(5)O(2) (+) cation, which presents a symmetric single-well structure, allows us to analyze why these similar molecules behave differently with respect to proton transfer. From the vibronic analysis, a unified view of the Rudle-Pimentel three-center four-electron and charge transfer models of LBHBs is given. Finally, the large difference in the N-N distance in the D(3d) and C(3v) configurations of N(2)H(7) (+) indicates a large anharmonic coupling between alpha(2u)-alpha(1g) modes along the proton-transfer dynamics. This issue was explored by solving numerically the vibrational Schrodinger equation corresponding to the bidimensional E[Q(alpha(2u)),Q(alpha(1g))] energy surface calculated at the MP46-311++G(**) level of theory.
通过从头算和密度泛函理论(DFT)方法研究了质子键合氨二聚体阳离子N₂H₇⁺中低势垒氢键(LBHB)的微观起源和量子效应。在振子强度理论框架内对这些结果进行了分析,并与Zundel阳离子H₅O₂⁺的结果进行了比较。使用基于波函数的方法[Hartree-Fock、二阶和四阶Moller-Plesset理论(MP2和MP4)以及含单双激发的二次组态相互作用(QCISD)]进行的所有几何结构优化,都导致了一种不对称的H₃N-H⁺···NH₃构象(C₃v对称性),在两个等效极小值之间存在一个小的能垒(MP4和QCISD计算中为1.26 kcal/mol)。在DFT计算中,特别是在局域密度近似水平下,这个能垒的值被低估了,在该水平下几何结构优化导致了一种对称的H₃N···H⁺···NH₃结构(D₃d点群)。对称的D₃d结构的不稳定性被证明源于电子(¹A₁g)基态与五个低激发的A₂u对称激发态通过不对称的α₂u振动模式的赝Jahn-Teller混合。对赝Jahn-Teller耦合的分子轨道研究使我们能够根据NH₃分子的极化以及质子与NH₃单元之间的电荷转移(再键合)来讨论质子位移和LBHB形成的起源。对具有对称单阱结构的H₅O₂⁺阳离子的平行研究,使我们能够分析为什么这些相似的分子在质子转移方面表现不同。通过振子强度分析,给出了LBHBs的Rudle-Pimentel三中心四电子和电荷转移模型的统一观点。最后,N₂H₇⁺的D₃d和C₃v构型中N-N距离的巨大差异表明,沿着质子转移动力学,α₂u-α₁g模式之间存在很大的非谐耦合。通过数值求解对应于在MP4/6-311++G(**)理论水平计算的二维E[Q(α₂u),Q(α₁g)]能量表面的振动薛定谔方程,对这个问题进行了探讨。