Danca Marius-F
Department of Applied Sciences, Avram Iancu University, Cluj-Napoca, Romania.
Chaos. 2008 Sep;18(3):033111. doi: 10.1063/1.2965524.
The parameter perturbation methods (the most known being the OGY method) apply small wisely chosen swift kicks to the system once per cycle, to maintain it near the desired unstable periodic orbit. Thus, one can consider that a new attractor is finally generated. Another class of methods which allow the attractors born, imply small perturbations of the state variable [see, e.g., J. Güémez and M. A. Matías, Phys. Lett. A 181, 29 (1993)]. Whatever technique is utilized, generating any targeted attractor starting from a set of two or more of any kind of attractors (stable or not) of a considered dissipative continuous-time system cannot be achieved with these techniques. This kind of attractor synthesis [introduced in M.-F. Danca, W. K. S. Tang, and G. Chen, Appl. Math. Comput. 201, 650 (2008) and proved analytically in Y. Mao, W. K. S. Tang, and M.-F. Danca, Appl. Math. Comput. (submitted)] which starts from a set of given attractors, allows us, via periodic parameter-switching, to generate any of the set of all possible attractors of a class of continuous-time dissipative dynamical systems, depending linearly on the control parameter. In this paper we extend this technique proving empirically that even random manners for switching can be utilized for this purpose. These parameter-switches schemes are very easy to implement and require only the mathematical model of the underlying dynamical system, a convergent numerical method to integrate the system, and the bifurcation diagram to choose specific attractors. Relatively large parameter switches are admitted. As a main result, these switching algorithms (deterministic or random) offer a new perspective on the set of all attractors of a class of dissipative continuous-time dynamical systems.
参数微扰方法(最著名的是OGY方法)每个周期对系统明智地施加一次小的快速冲击,以使系统维持在期望的不稳定周期轨道附近。因此,可以认为最终产生了一个新的吸引子。另一类允许吸引子产生的方法,涉及状态变量的小扰动[例如,见J. Güémez和M. A. Matías,《物理快报A》181, 29 (1993)]。无论采用何种技术,从所考虑的耗散连续时间系统的两个或更多任意类型(稳定或不稳定)的吸引子集合出发,都无法利用这些技术生成任何目标吸引子。这种从给定吸引子集合出发的吸引子合成方法[由M.-F. Danca、W. K. S. Tang和G. Chen在《应用数学与计算》201, 650 (2008)中引入,并由Y. Mao、W. K. S. Tang和M.-F. Danca进行了理论证明(待发表)],通过周期性参数切换,使我们能够生成一类连续时间耗散动力系统所有可能吸引子集合中的任何一个,且该吸引子线性依赖于控制参数。在本文中,我们扩展了这项技术,通过实验证明甚至随机的切换方式也可用于此目的。这些参数切换方案非常易于实现,只需要基础动力系统的数学模型、用于积分系统的收敛数值方法以及用于选择特定吸引子的分岔图。允许相对较大的参数切换。作为主要结果,这些切换算法(确定性或随机)为一类耗散连续时间动力系统的所有吸引子集合提供了新的视角。