Suppr超能文献

微分方程非线性系统的共振强迫

Resonant forcing of nonlinear systems of differential equations.

作者信息

Gintautas Vadas, Hübler Alfred W

机构信息

Center for Complex Systems Research, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Chaos. 2008 Sep;18(3):033118. doi: 10.1063/1.2964200.

Abstract

We study resonances of nonlinear systems of differential equations, including but not limited to the equations of motion of a particle moving in a potential. We use the calculus of variations to determine the minimal additive forcing function that induces a desired terminal response, such as an energy in the case of a physical system. We include the additional constraint that only select degrees of freedom be forced, corresponding to a very general class of problems in which not all of the degrees of freedom in an experimental system are accessible to forcing. We find that certain Lagrange multipliers take on a fundamental physical role as the effective forcing experienced by the degrees of freedom which are not forced directly. Furthermore, we find that the product of the displacement of nearby trajectories and the effective total forcing function is a conserved quantity. We demonstrate the efficacy of this methodology with several examples.

摘要

我们研究微分方程非线性系统的共振,包括但不限于在势场中运动的粒子的运动方程。我们使用变分法来确定能引发所需终端响应的最小附加强迫函数,比如在物理系统中为能量。我们纳入了额外的约束条件,即仅对选定的自由度施加强迫,这对应于一类非常普遍的问题,在这类问题中,实验系统中的并非所有自由度都能被强迫作用。我们发现,某些拉格朗日乘子具有基本的物理作用,即作为未直接受到强迫的自由度所经历的有效强迫。此外,我们发现相邻轨迹的位移与有效总强迫函数的乘积是一个守恒量。我们通过几个例子展示了这种方法的有效性。

相似文献

1
Resonant forcing of nonlinear systems of differential equations.
Chaos. 2008 Sep;18(3):033118. doi: 10.1063/1.2964200.
2
A decentralized adaptive robust method for chaos control.
Chaos. 2009 Sep;19(3):033111. doi: 10.1063/1.3183806.
6
Stabilizing spiral waves by noninvasive structural perturbations.
Chaos. 2008 Sep;18(3):033103. doi: 10.1063/1.2949930.
7
A lot of strange attractors: chaotic or not?
Chaos. 2008 Jun;18(2):023127. doi: 10.1063/1.2937016.
8
Low dimensional behavior of large systems of globally coupled oscillators.
Chaos. 2008 Sep;18(3):037113. doi: 10.1063/1.2930766.
9
Filtering by nonlinear systems.
Chaos. 2008 Dec;18(4):043118. doi: 10.1063/1.3025285.
10
Rank one chaos in a class of planar systems with heteroclinic cycle.
Chaos. 2009 Dec;19(4):043122. doi: 10.1063/1.3263945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验