Suppr超能文献

线粒体复合体I抑制剂对活性氧生成的不同影响。

Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.

作者信息

Fato Romana, Bergamini Christian, Bortolus Marco, Maniero Anna Lisa, Leoni Serena, Ohnishi Tomoko, Lenaz Giorgio

机构信息

Dipartimento di Biochimica G. Moruzzi, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.

出版信息

Biochim Biophys Acta. 2009 May;1787(5):384-92. doi: 10.1016/j.bbabio.2008.11.003. Epub 2008 Nov 14.

Abstract

We have investigated the production of reactive oxygen species (ROS) by Complex I in isolated open bovine heart submitochondrial membrane fragments during forward electron transfer in presence of NADH, by means of the probe 2',7'-Dichlorodihydrofluorescein diacetate. ROS production by Complex I is strictly related to its inhibited state. Our results indicate that different Complex I inhibitors can be grouped into two classes: Class A inhibitors (Rotenone, Piericidin A and Rolliniastatin 1 and 2) increase ROS production; Class B inhibitors (Stigmatellin, Mucidin, Capsaicin and Coenzyme Q(2)) prevent ROS production also in the presence of Class A inhibitors. Addition of the hydrophilic Coenzyme Q(1) as an electron acceptor potentiates the effect of Rotenone-like inhibitors in increasing ROS production, but has no effect in the presence of Stigmatellin-like inhibitors; the effect is not shared by more hydrophobic quinones such as decyl-ubiquinone. This behaviour relates the prooxidant CoQ(1) activity to a hydrophilic electron escape site. Moreover the two classes of Complex I inhibitors have an opposite effect on the increase of NADH-DCIP reduction induced by short chain quinones: only Class B inhibitors allow this increase, indicating the presence of a Rotenone-sensitive but Stigmatellin-insensitive semiquinone species in the active site of the enzyme. The presence of this semiquinone was also suggested by preliminary EPR data. The results suggest that electron transfer from the iron-sulphur clusters (N2) to Coenzyme Q occurs in two steps gated by two different conformations, the former being sensitive to Rotenone and the latter to Stigmatellin.

摘要

我们借助探针2',7'-二氯二氢荧光素二乙酸酯,研究了在NADH存在下,分离的开放型牛心亚线粒体膜片段中,复合物I在正向电子传递过程中活性氧(ROS)的产生情况。复合物I产生ROS与其抑制状态密切相关。我们的结果表明,不同的复合物I抑制剂可分为两类:A类抑制剂(鱼藤酮、杀粉蝶菌素A以及罗利抑素1和2)会增加ROS的产生;B类抑制剂(柱晶白霉素、粘菌素、辣椒素和辅酶Q(2))即使在存在A类抑制剂的情况下也能阻止ROS的产生。添加亲水性辅酶Q(1)作为电子受体,会增强鱼藤酮类抑制剂增加ROS产生的效果,但在存在柱晶白霉素类抑制剂时则没有效果;更疏水的醌类如癸基泛醌则没有这种作用。这种行为将促氧化的辅酶Q(1)活性与一个亲水性电子逃逸位点联系起来。此外,两类复合物I抑制剂对短链醌类诱导的NADH-DCIP还原增加有相反的作用:只有B类抑制剂能使这种增加发生,这表明在该酶的活性位点存在一种对鱼藤酮敏感但对柱晶白霉素不敏感的半醌物种。初步的电子顺磁共振(EPR)数据也表明了这种半醌的存在。结果表明,从铁硫簇(N2)到辅酶Q的电子传递分两步进行,由两种不同的构象控制,前者对鱼藤酮敏感,后者对柱晶白霉素敏感。

相似文献

1
Differential effects of mitochondrial Complex I inhibitors on production of reactive oxygen species.
Biochim Biophys Acta. 2009 May;1787(5):384-92. doi: 10.1016/j.bbabio.2008.11.003. Epub 2008 Nov 14.
4
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
Biochim Biophys Acta. 2013 Oct;1827(10):1156-64. doi: 10.1016/j.bbabio.2013.06.005. Epub 2013 Jun 22.
9
Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III.
Biochim Biophys Acta. 2009 Jun;1790(6):558-65. doi: 10.1016/j.bbagen.2009.01.011. Epub 2009 Feb 6.
10
Generation of superoxide by the mitochondrial Complex I.
Biochim Biophys Acta. 2006 May-Jun;1757(5-6):553-61. doi: 10.1016/j.bbabio.2006.03.013. Epub 2006 Apr 17.

引用本文的文献

2
Mode of Action of Toxin 6-Hydroxydopamine in SH-SY5Y Using NMR Metabolomics.
Molecules. 2025 Aug 12;30(16):3352. doi: 10.3390/molecules30163352.
3
Fasting the mitochondria to prevent neurodegeneration: the role of ceramides.
Front Neurosci. 2025 Jun 4;19:1602149. doi: 10.3389/fnins.2025.1602149. eCollection 2025.
4
Mitochondrial reactive oxygen species production in lungs of rats with different susceptibilities to hyperoxia-induced acute lung injury.
Biochim Biophys Acta Bioenerg. 2025 Jun 12;1866(4):149561. doi: 10.1016/j.bbabio.2025.149561.
10
Molecular Mechanisms of Response to Different Sources of Oxidative Stress.
J Proteome Res. 2025 Feb 7;24(2):449-458. doi: 10.1021/acs.jproteome.4c00573. Epub 2025 Jan 19.

本文引用的文献

1
The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging.
J Am Aging Assoc. 2000 Oct;23(4):227-53. doi: 10.1007/s11357-000-0022-9.
5
Energy converting NADH:quinone oxidoreductase (complex I).
Annu Rev Biochem. 2006;75:69-92. doi: 10.1146/annurev.biochem.75.103004.142539.
6
The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7607-12. doi: 10.1073/pnas.0510977103. Epub 2006 May 8.
7
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus.
Science. 2006 Mar 10;311(5766):1430-6. doi: 10.1126/science.1123809. Epub 2006 Feb 9.
8
Fluorescence probes used for detection of reactive oxygen species.
J Biochem Biophys Methods. 2005 Dec 31;65(2-3):45-80. doi: 10.1016/j.jbbm.2005.10.003. Epub 2005 Nov 4.
9
10
Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.
J Biol Chem. 2005 Aug 26;280(34):30129-35. doi: 10.1074/jbc.M504709200. Epub 2005 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验