Smertenko Andrei P, Kaloriti Despina, Chang Hsin-Yu, Fiserova Jindriska, Opatrny Zdenek, Hussey Patrick J
Integrative Cell Biology Laboratory, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom.
Plant Cell. 2008 Dec;20(12):3346-58. doi: 10.1105/tpc.108.063362. Epub 2008 Dec 5.
The microtubule-associated protein, MAP65, is a member of a family of divergent microtubule-associated proteins from different organisms generally involved in maintaining the integrity of the central spindle in mitosis. The dicotyledon Arabidopsis thaliana and the monocotyledon rice (Oryza sativa) genomes contain 9 and 11 MAP65 genes, respectively. In this work, we show that the majority of these proteins fall into five phylogenetic clades, with the greatest variation between clades being in the C-terminal random coil domain. At least one Arabidopsis and one rice isotype is within each clade, indicating a functional specification for the C terminus. In At MAP65-1, the C-terminal domain is a microtubule binding region (MTB2) harboring the phosphorylation sites that control its activity. The At MAP65 isotypes show differential localization to microtubule arrays and promote microtubule polymerization with variable efficiency in a MTB2-dependent manner. In vivo studies demonstrate that the dynamics of the association and dissociation of different MAP65 isotypes with microtubules can vary up to 10-fold and that this correlates with their ability to promote microtubule polymerization. Our data demonstrate that the C-terminal variable region, MTB2, determines the dynamic properties of individual isotypes and suggest that slower turnover is conditional for more efficient microtubule polymerization.
微管相关蛋白MAP65是来自不同生物体的多种微管相关蛋白家族的成员,通常参与维持有丝分裂中纺锤体中部的完整性。双子叶植物拟南芥和单子叶植物水稻(Oryza sativa)的基因组分别包含9个和11个MAP65基因。在这项研究中,我们发现这些蛋白中的大多数可分为五个系统发育分支,各分支之间差异最大的是C端无规卷曲结构域。每个分支中至少有一个拟南芥和一个水稻的同种型,这表明C端具有功能特异性。在拟南芥MAP65-1中,C端结构域是一个微管结合区域(MTB2),含有控制其活性的磷酸化位点。拟南芥MAP65同种型在微管阵列上表现出不同的定位,并以MTB2依赖的方式以不同效率促进微管聚合。体内研究表明,不同MAP65同种型与微管结合和解离的动力学变化可达10倍,这与其促进微管聚合的能力相关。我们的数据表明,C端可变区域MTB2决定了各个同种型的动态特性,并表明较慢的周转是更有效地进行微管聚合的条件。