Suppr超能文献

关节表面的快速碰撞检测方法。

Fast collision detection methods for joint surfaces.

作者信息

Arbabi Ehsan, Boulic Ronan, Thalmann Daniel

机构信息

Virtual Reality Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 14, 1015 Lausanne, Switzerland.

出版信息

J Biomech. 2009 Jan 19;42(2):91-9. doi: 10.1016/j.jbiomech.2008.10.017. Epub 2008 Dec 4.

Abstract

In the recent years medical diagnosis and surgery planning often require the precise evaluation of joint movements. This has led to exploit reconstructed three-dimensional models of the joint tissues obtained from CT or MR Images (for bones, cartilages, etc.). In such context, efficiently and precisely detecting collisions among the virtual tissues is critical for guaranteeing the quality of any further analysis. The common methods of collision detection are usually designed for general purpose applications in computer graphics or CAD-CAM. Hence they face worst case scenarios when handling the quasi-perfect concavity-convexity matching of the articular surfaces. In this paper, we present two fast collision detection methods that take advantage of the relative proximity and the nature of the movement to discard unnecessary calculations. The proposed approaches also accurately provide the penetration depths along two functional directions, without any approximation. They are compared with other collision detection methods and tested in different biomedical scenarios related to the human hip joint.

摘要

近年来,医学诊断和手术规划常常需要对关节运动进行精确评估。这促使人们利用从CT或MR图像(用于骨骼、软骨等)获得的关节组织的三维重建模型。在这种情况下,高效且精确地检测虚拟组织之间的碰撞对于保证任何进一步分析的质量至关重要。碰撞检测的常用方法通常是为计算机图形学或CAD-CAM中的通用应用而设计的。因此,在处理关节表面的准完美凹凸匹配时,它们会面临最坏情况。在本文中,我们提出了两种快速碰撞检测方法,这些方法利用相对接近度和运动性质来摒弃不必要的计算。所提出的方法还能精确地沿两个功能方向提供穿透深度,无需任何近似。我们将它们与其他碰撞检测方法进行了比较,并在与人体髋关节相关的不同生物医学场景中进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验