Song Hee-eun, Kirmaier Christine, Diers James R, Lindsey Jonathan S, Bocian David F, Holten Dewey
Department of Chemistry, Washington University, St. Louis, Missouri 63130-4889, USA.
J Phys Chem B. 2009 Jan 8;113(1):54-63. doi: 10.1021/jp8060637.
The mechanisms and dynamics of quenching of a photoexcited free base porphyrin (Fb*) covalently linked to a nearby oxidized zinc porphyrin (Zn(+)) have been investigated in a set of five dyads using time-resolved absorption spectroscopy. The dyads include porphyrins joined at the meso-positions by a diphenylethyne linker or a diarylethyne linker with 2,6-dimethyl substitution on either one or both of the aryl rings. Another dyad is linked at the beta-pyrrole positions of the porphyrins via a diphenylethyne linker. The type of linker and attachment site modulate the interporphyrin through-bond electronic coupling via steric hindrance (porphyrin-linker orbital overlap) and attachment motif (porphyrin electron density at the connection site). For each ZnFb dyad, the zinc porphyrin is selectively electrochemically oxidized (to produce Zn(+)Fb), the free base porphyrin is selectively excited with a 130 fs flash (to produce Zn(+)Fb*), and the subsequent dynamics monitored. The Zn(+)Fb* excited state has a lifetime of approximately 3 to approximately 30 ps (depending on the linker steric hindrance and attachment site) and decays by parallel excited-state energy- and hole-transfer pathways. The relative yields of the two channels depend on a number of factors including the linker-mediated through-bond electronic coupling and a modest (< or =20%) Forster through-space contribution for the energy-transfer route. One product of Zn(+)Fb* decay is the metastable ground-state ZnFb(+), which decays to the Zn(+)Fb preflash state by ground-state hole transfer with a linker-dependent rate constant of (20 ps)(-1) to (150 ps)(-1). Collectively, these results provide a detailed understanding of the mechanism and dynamics of quenching of excited porphyrins by nearby oxidized sites, as well as the dynamics of ground-state hole transfer between nonequivalent porphyrins (Zn and Fb). The findings also lay the foundation for the study of ground-state hole transfer between identical porphyrins (e.g., Zn/Zn, Fb/Fb) in larger multiporphyrin arrays wherein a hole is selectively placed via electrochemical oxidation.
利用时间分辨吸收光谱,在一组五个二元体系中研究了与附近氧化锌卟啉(Zn(+))共价连接的光激发游离碱卟啉(Fb*)的猝灭机制和动力学。这些二元体系包括通过二苯乙炔连接基或芳基环上一个或两个带有2,6 - 二甲基取代的二芳基乙炔连接基在中位连接的卟啉。另一个二元体系通过二苯乙炔连接基在卟啉的β - 吡咯位置相连。连接基的类型和连接位点通过空间位阻(卟啉 - 连接基轨道重叠)和连接基序(连接位点处的卟啉电子密度)来调节卟啉间的键间电子耦合。对于每个ZnFb二元体系,锌卟啉被选择性地电化学氧化(生成Zn(+)Fb),游离碱卟啉用130 fs的闪光选择性激发(生成Zn(+)Fb*),并监测随后的动力学过程。Zn(+)Fb激发态的寿命约为3到约30 ps(取决于连接基的空间位阻和连接位点),并通过平行的激发态能量转移和空穴转移途径衰减。这两个通道的相对产率取决于许多因素,包括连接基介导的键间电子耦合以及能量转移途径中适度的(≤20%)福斯特空间贡献。Zn(+)Fb衰变的一个产物是亚稳态基态ZnFb(+),它通过基态空穴转移以与连接基相关的速率常数(20 ps)(-1)到(150 ps)(-1)衰变回Zn(+)Fb预闪光态。总体而言,这些结果详细阐述了附近氧化位点对激发卟啉的猝灭机制和动力学,以及非等价卟啉(Zn和Fb)之间基态空穴转移的动力学。这些发现也为研究更大的多卟啉阵列中相同卟啉(如Zn/Zn、Fb/Fb)之间的基态空穴转移奠定了基础,在这种阵列中,空穴通过电化学氧化被选择性地放置。