Lee Soo-Kwan, Maye Mathew M, Zhang Yian-Biao, Gang Oleg, van der Lelie Daniel
Center for Functional Nanomaterials, and Biology Department, Brookhaven National Laboratory, Upton, New York 11973, USA.
Langmuir. 2009 Jan 20;25(2):657-60. doi: 10.1021/la803596q.
We assembled single-stranded DNA (ssDNA) conjugated nanoparticles using the phage M13 gene 5 protein (g5p) as the molecular glue to bind two antiparallel noncomplementary ssDNA strands. The entire process was controlled tightly by the concentration of the g5p protein and the presence of double-stranded DNA. The g5p-ssDNA aggregate was disintegrated by hybridization with complementary ssDNA (C-ssDNA) that triggers the dissociation of the complex. Polyhistidine-tagged g5p was bound to nickel nitrilotriacetic acid (Ni2+-NTA) conjugated nanoparticles and subsequently used to coassemble the ssDNA-conjugated nanoparticles into multiparticle-type aggregates. Our approach offers great promise for designing biologically functional, controllable protein/nanoparticle composites.
我们使用噬菌体M13基因5蛋白(g5p)作为分子胶水来结合两条反平行的非互补单链DNA(ssDNA),组装了单链DNA共轭纳米颗粒。整个过程由g5p蛋白的浓度和双链DNA的存在严格控制。g5p-ssDNA聚集体通过与互补单链DNA(C-ssDNA)杂交而解体,从而触发复合物的解离。带有多组氨酸标签的g5p与镍三乙酸(Ni2+-NTA)共轭纳米颗粒结合,随后用于将ssDNA共轭纳米颗粒共同组装成多颗粒型聚集体。我们的方法为设计具有生物功能、可控的蛋白质/纳米颗粒复合材料提供了广阔前景。