Lu Xu, Hamkalo Barbara, Parseghian Missag H, Hansen Jeffrey C
Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA.
Biochemistry. 2009 Jan 13;48(1):164-72. doi: 10.1021/bi801636y.
Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their approximately 100-residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1 degrees to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J. Biol. Chem. 279, 8701-8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms or recombinant H1 degrees CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo.
连接组蛋白与染色质纤维的核小体和连接DNA结合,导致连接DNA结构发生变化,并使高阶折叠和寡聚染色质结构稳定。连接组蛋白主要通过其约100个残基的C末端结构域(CTD)影响染色质结构。我们之前已经表明,连接组蛋白H1°改变染色质结构的能力定位于两个不连续的24/25个残基的CTD区域(Lu,X.,和Hansen,J.C.(2004)J.Biol.Chem.279,8701 - 8707)。为了确定这些结果的生化基础,我们对用内源性小鼠体细胞H1亚型或重组H1° CTD突变体组装的染色质模型系统进行了表征,其中一级序列被打乱、氨基酸组成发生突变或各种CTD区域的位置被交换。我们的结果表明,特定的氨基酸组成在H1 CTD的分子识别和功能中起着基本作用。此外,这些实验支持了一种新的CTD功能分子模型,并为体内H1亚型敲除实验中观察到的冗余提供了生化基础。