Suppr超能文献

连接组蛋白C末端结构域的染色质凝聚功能由特定的氨基酸组成和内在蛋白质无序介导。

Chromatin condensing functions of the linker histone C-terminal domain are mediated by specific amino acid composition and intrinsic protein disorder.

作者信息

Lu Xu, Hamkalo Barbara, Parseghian Missag H, Hansen Jeffrey C

机构信息

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA.

出版信息

Biochemistry. 2009 Jan 13;48(1):164-72. doi: 10.1021/bi801636y.

Abstract

Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their approximately 100-residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1 degrees to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J. Biol. Chem. 279, 8701-8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms or recombinant H1 degrees CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo.

摘要

连接组蛋白与染色质纤维的核小体和连接DNA结合,导致连接DNA结构发生变化,并使高阶折叠和寡聚染色质结构稳定。连接组蛋白主要通过其约100个残基的C末端结构域(CTD)影响染色质结构。我们之前已经表明,连接组蛋白H1°改变染色质结构的能力定位于两个不连续的24/25个残基的CTD区域(Lu,X.,和Hansen,J.C.(2004)J.Biol.Chem.279,8701 - 8707)。为了确定这些结果的生化基础,我们对用内源性小鼠体细胞H1亚型或重组H1° CTD突变体组装的染色质模型系统进行了表征,其中一级序列被打乱、氨基酸组成发生突变或各种CTD区域的位置被交换。我们的结果表明,特定的氨基酸组成在H1 CTD的分子识别和功能中起着基本作用。此外,这些实验支持了一种新的CTD功能分子模型,并为体内H1亚型敲除实验中观察到的冗余提供了生化基础。

相似文献

2
Identification of specific functional subdomains within the linker histone H10 C-terminal domain.
J Biol Chem. 2004 Mar 5;279(10):8701-7. doi: 10.1074/jbc.M311348200. Epub 2003 Dec 10.
3
HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
Nucleic Acids Res. 2017 Sep 29;45(17):9917-9930. doi: 10.1093/nar/gkx579.
4
Chromatin structure-dependent conformations of the H1 CTD.
Nucleic Acids Res. 2016 Nov 2;44(19):9131-9141. doi: 10.1093/nar/gkw586. Epub 2016 Jun 30.
5
Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
Mol Cell Biol. 2011 Jun;31(11):2341-8. doi: 10.1128/MCB.05145-11. Epub 2011 Apr 4.
7
Structure of the H1 C-terminal domain and function in chromatin condensation.
Biochem Cell Biol. 2011 Feb;89(1):35-44. doi: 10.1139/O10-024.
8
Intrinsic protein disorder, amino acid composition, and histone terminal domains.
J Biol Chem. 2006 Jan 27;281(4):1853-6. doi: 10.1074/jbc.R500022200. Epub 2005 Nov 21.
9
Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
Mol Cell. 2017 May 4;66(3):384-397.e8. doi: 10.1016/j.molcel.2017.04.012.
10
Histone H1 and its isoforms: contribution to chromatin structure and function.
Gene. 2009 Feb 15;431(1-2):1-12. doi: 10.1016/j.gene.2008.11.003. Epub 2008 Nov 14.

引用本文的文献

2
Fuzzy recognition by the prokaryotic transcription factor HigA2 from Vibrio cholerae.
Nat Commun. 2024 Apr 10;15(1):3105. doi: 10.1038/s41467-024-47296-3.
4
Histone H3 Tail Modifications Alter Structure and Dynamics of the H1 C-Terminal Domain Within Nucleosomes.
J Mol Biol. 2023 Oct 1;435(19):168242. doi: 10.1016/j.jmb.2023.168242. Epub 2023 Aug 23.
5
Electrostatics tunes protein interactions to context.
Proc Natl Acad Sci U S A. 2022 Aug 2;119(31):e2209201119. doi: 10.1073/pnas.2209201119. Epub 2022 Jul 15.
6
H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes.
Biochemistry. 2022 Apr 19;61(8):625-638. doi: 10.1021/acs.biochem.2c00001. Epub 2022 Apr 4.
7
Release of linker histone from the nucleosome driven by polyelectrolyte competition with a disordered protein.
Nat Chem. 2022 Feb;14(2):224-231. doi: 10.1038/s41557-021-00839-3. Epub 2022 Jan 6.
8
When Order Meets Disorder: Modeling and Function of the Protein Interface in Fuzzy Complexes.
Biomolecules. 2021 Oct 16;11(10):1529. doi: 10.3390/biom11101529.
9
Unraveling linker histone interactions in nucleosomes.
Curr Opin Struct Biol. 2021 Dec;71:87-93. doi: 10.1016/j.sbi.2021.06.001. Epub 2021 Jul 8.
10
Noncanonical Functions and Cellular Dynamics of the Mammalian Signal Recognition Particle Components.
Front Mol Biosci. 2021 May 25;8:679584. doi: 10.3389/fmolb.2021.679584. eCollection 2021.

本文引用的文献

1
Amyloids of shuffled prion domains that form prions have a parallel in-register beta-sheet structure.
Biochemistry. 2008 Apr 1;47(13):4000-7. doi: 10.1021/bi7024589. Epub 2008 Mar 7.
2
Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription.
J Biol Chem. 2008 Apr 4;283(14):9113-26. doi: 10.1074/jbc.M708205200. Epub 2008 Feb 7.
3
Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions.
Trends Biochem Sci. 2008 Jan;33(1):2-8. doi: 10.1016/j.tibs.2007.10.003. Epub 2007 Nov 28.
4
5
Characterization of molecular recognition features, MoRFs, and their binding partners.
J Proteome Res. 2007 Jun;6(6):2351-66. doi: 10.1021/pr0701411. Epub 2007 May 9.
6
Disorder and sequence repeats in hub proteins and their implications for network evolution.
J Proteome Res. 2006 Nov;5(11):2985-95. doi: 10.1021/pr060171o.
7
Analysis of molecular recognition features (MoRFs).
J Mol Biol. 2006 Oct 6;362(5):1043-59. doi: 10.1016/j.jmb.2006.07.087. Epub 2006 Aug 4.
10
Intrinsic protein disorder, amino acid composition, and histone terminal domains.
J Biol Chem. 2006 Jan 27;281(4):1853-6. doi: 10.1074/jbc.R500022200. Epub 2005 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验