Suppr超能文献

砷对酿酒酵母的毒性是TORC1激酶受到抑制并伴有慢性应激反应的结果。

Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response.

作者信息

Hosiner Dagmar, Lempiäinen Harri, Reiter Wolfgang, Urban Joerg, Loewith Robbie, Ammerer Gustav, Schweyen Rudolf, Shore David, Schüller Christoph

机构信息

Department of Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.

出版信息

Mol Biol Cell. 2009 Feb;20(3):1048-57. doi: 10.1091/mbc.e08-04-0438. Epub 2008 Dec 10.

Abstract

The conserved Target Of Rapamycin (TOR) growth control signaling pathway is a major regulator of genes required for protein synthesis. The ubiquitous toxic metalloid arsenic, as well as mercury and nickel, are shown here to efficiently inhibit the rapamycin-sensitive TORC1 (TOR complex 1) protein kinase. This rapid inhibition of the TORC1 kinase is demonstrated in vivo by the dephosphorylation and inactivation of its downstream effector, the yeast S6 kinase homolog Sch9. Arsenic, mercury, and nickel cause reduction of transcription of ribosome biogenesis genes, which are under the control of Sfp1, a TORC1-regulated transcriptional activator. We report that arsenic stress deactivates Sfp1 as it becomes dephosphorylated, dissociates from chromatin, and exits the nucleus. Curiously, whereas loss of SFP1 function leads to increased arsenic resistance, absence of TOR1 or SCH9 has the opposite effect suggesting that TORC1 has a role beyond down-regulation of Sfp1. Indeed, we show that arsenic activates the transcription factors Msn2 and Msn4 both of which are targets of TORC1 and protein kinase A (PKA). In contrast to TORC1, PKA activity is not repressed during acute arsenic stress. A normal level of PKA activity might serve to dampen the stress response since hyperactive Msn2 will decrease arsenic tolerance. Thus arsenic toxicity in yeast might be determined by the balance between chronic activation of general stress factors in combination with lowered TORC1 kinase activity.

摘要

保守的雷帕霉素靶蛋白(TOR)生长控制信号通路是蛋白质合成所需基因的主要调节因子。本文显示,普遍存在的有毒类金属砷以及汞和镍能有效抑制对雷帕霉素敏感的TORC1(TOR复合物1)蛋白激酶。TORC1激酶的这种快速抑制在体内通过其下游效应物酵母S6激酶同源物Sch9的去磷酸化和失活得以证明。砷、汞和镍会导致核糖体生物发生基因的转录减少,这些基因受TORC1调节的转录激活因子Sfp1的控制。我们报告,砷胁迫会使Sfp1失活,因为它会发生去磷酸化、从染色质上解离并离开细胞核。奇怪的是,虽然SFP1功能丧失会导致砷抗性增加,但TOR1或SCH9缺失则有相反的效果,这表明TORC1除了下调Sfp1之外还有其他作用。事实上,我们表明砷会激活转录因子Msn2和Msn4,这两者都是TORC1和蛋白激酶A(PKA)的靶标。与TORC1不同,在急性砷胁迫期间PKA活性不会受到抑制。正常水平的PKA活性可能有助于抑制应激反应,因为过度活跃的Msn2会降低砷耐受性。因此,酵母中的砷毒性可能由一般应激因子的慢性激活与降低的TORC1激酶活性之间的平衡所决定。

相似文献

2
Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling.
Mol Cell. 2009 Mar 27;33(6):704-16. doi: 10.1016/j.molcel.2009.01.034.
3
Caffeine extends yeast lifespan by targeting TORC1.
Mol Microbiol. 2008 Jul;69(1):277-85. doi: 10.1111/j.1365-2958.2008.06292.x. Epub 2008 May 26.
4
Genome-wide expression analysis reveals TORC1-dependent and -independent functions of Sch9.
FEMS Yeast Res. 2008 Dec;8(8):1276-88. doi: 10.1111/j.1567-1364.2008.00432.x. Epub 2008 Aug 28.
5
The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates.
Mol Biol Cell. 2010 Oct 1;21(19):3475-86. doi: 10.1091/mbc.E10-03-0182. Epub 2010 Aug 11.
6
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae.
Mol Cell. 2007 Jun 8;26(5):663-74. doi: 10.1016/j.molcel.2007.04.020.
7
A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis.
Genes Dev. 2009 Aug 15;23(16):1944-58. doi: 10.1101/gad.1804409.
8
Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae.
Mol Biol Cell. 2007 Oct;18(10):4180-9. doi: 10.1091/mbc.e07-05-0485. Epub 2007 Aug 15.
10
Rapamycin inhibits yeast nucleotide excision repair independently of tor kinases.
Toxicol Sci. 2010 Jan;113(1):77-84. doi: 10.1093/toxsci/kfp238. Epub 2009 Oct 5.

引用本文的文献

1
Arsenic binds to nuclear transport factors and disrupts nucleocytoplasmic transport.
J Cell Sci. 2025 Aug 15;138(16). doi: 10.1242/jcs.263889.
2
Direct binding of arsenicals to nuclear transport factors disrupts nucleocytoplasmic transport.
bioRxiv. 2025 Jan 15:2025.01.13.632748. doi: 10.1101/2025.01.13.632748.
4
Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony.
Cell Mol Life Sci. 2023 Oct 30;80(11):342. doi: 10.1007/s00018-023-04992-5.
5
Identification of novel arsenic resistance genes in yeast.
Microbiologyopen. 2022 Jun;11(3):e1284. doi: 10.1002/mbo3.1284.
6
Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study.
Front Pharmacol. 2021 Nov 26;12:749035. doi: 10.3389/fphar.2021.749035. eCollection 2021.
7
Interactions with Arsenic: Mechanisms of Toxicity and Cellular Resistance in Eukaryotic Microorganisms.
Int J Environ Res Public Health. 2021 Nov 21;18(22):12226. doi: 10.3390/ijerph182212226.
9
Arsenic Exposure and Compromised Protein Quality Control.
Chem Res Toxicol. 2020 Jul 20;33(7):1594-1604. doi: 10.1021/acs.chemrestox.0c00107. Epub 2020 Jun 2.

本文引用的文献

1
Caffeine extends yeast lifespan by targeting TORC1.
Mol Microbiol. 2008 Jul;69(1):277-85. doi: 10.1111/j.1365-2958.2008.06292.x. Epub 2008 May 26.
2
Global transcriptome and deletome profiles of yeast exposed to transition metals.
PLoS Genet. 2008 Apr 25;4(4):e1000053. doi: 10.1371/journal.pgen.1000053.
3
Acute promyelocytic leukemia: from highly fatal to highly curable.
Blood. 2008 Mar 1;111(5):2505-15. doi: 10.1182/blood-2007-07-102798.
4
Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium.
Chem Res Toxicol. 2008 Jan;21(1):28-44. doi: 10.1021/tx700198a. Epub 2007 Oct 30.
5
Ensemble modeling for analysis of cell signaling dynamics.
Nat Biotechnol. 2007 Sep;25(9):1001-6. doi: 10.1038/nbt1330.
6
Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide.
Proc Natl Acad Sci U S A. 2007 Jul 24;104(30):12288-93. doi: 10.1073/pnas.0701549104. Epub 2007 Jul 18.
7
Comparative genomics of the environmental stress response in ascomycete fungi.
Yeast. 2007 Nov;24(11):961-76. doi: 10.1002/yea.1512.
9
Sch9 is a major target of TORC1 in Saccharomyces cerevisiae.
Mol Cell. 2007 Jun 8;26(5):663-74. doi: 10.1016/j.molcel.2007.04.020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验