Suppr超能文献

白内障摘除-屈光-植入技术用于人工晶状体屈光力计算的理论评估

Theoretical evaluation of the cataract extraction-refraction-implantation techniques for intraocular lens power calculation.

作者信息

Sheppard Amy L, Dunne Mark C M, Wolffsohn James S, Davies Leon N

机构信息

Ophthalmic Research Group, Aston University, Birmingham B4 7ET, UK.

出版信息

Ophthalmic Physiol Opt. 2008 Nov;28(6):568-76. doi: 10.1111/j.1475-1313.2008.00601.x.

Abstract

PURPOSE

To evaluate theoretically three previously published formulae that use intra-operative aphakic refractive error to calculate intraocular lens (IOL) power, not necessitating pre-operative biometry. The formulae are as follows: IOL power (D) = Aphakic refraction x 2.01 [Ianchulev et al., J. Cataract Refract. Surg.31 (2005) 1530]; IOL power (D) = Aphakic refraction x 1.75 [Mackool et al., J. Cataract Refract. Surg.32 (2006) 435]; IOL power (D) = 0.07x(2) + 1.27x + 1.22, where x = aphakic refraction [Leccisotti, Graefes Arch. Clin. Exp. Ophthalmol.246 (2008) 729].

METHODS

Gaussian first order calculations were used to determine the relationship between intra-operative aphakic refractive error and the IOL power required for emmetropia in a series of schematic eyes incorporating varying corneal powers, pre-operative crystalline lens powers, axial lengths and post-operative IOL positions. The three previously published formulae, based on empirical data, were then compared in terms of IOL power errors that arose in the same schematic eye variants.

RESULTS

An inverse relationship exists between theoretical ratio and axial length. Corneal power and initial lens power have little effect on calculated ratios, whilst final IOL position has a significant impact. None of the three empirically derived formulae are universally accurate but each is able to predict IOL power precisely in certain theoretical scenarios. The formulae derived by Ianchulev et al. and Leccisotti are most accurate for posterior IOL positions, whereas the Mackool et al. formula is most reliable when the IOL is located more anteriorly.

CONCLUSION

Final IOL position was found to be the chief determinant of IOL power errors. Although the A-constants of IOLs are known and may be accurate, a variety of factors can still influence the final IOL position and lead to undesirable refractive errors. Optimum results using these novel formulae would be achieved in myopic eyes.

摘要

目的

从理论上评估三个先前发表的公式,这些公式利用术中无晶状体眼屈光不正来计算人工晶状体(IOL)的度数,无需术前生物测量。公式如下:IOL度数(D)=无晶状体眼屈光度数×2.01[扬丘列夫等人,《白内障与屈光手术杂志》31(2005)1530];IOL度数(D)=无晶状体眼屈光度数×1.75[马库尔等人,《白内障与屈光手术杂志》32(2006)435];IOL度数(D)=0.07x² + 1.27x + 1.22,其中x =无晶状体眼屈光度数[莱乔西otti,《格拉夫斯临床与实验眼科学文献》246(2008)729]。

方法

采用高斯一阶计算法,在一系列包含不同角膜屈光度、术前晶状体屈光度、眼轴长度和术后IOL位置的模拟眼中,确定术中无晶状体眼屈光不正与正视所需IOL度数之间的关系。然后,根据在相同模拟眼变体中出现的IOL度数误差,对三个先前发表的基于经验数据的公式进行比较。

结果

理论比值与眼轴长度呈反比关系。角膜屈光度和初始晶状体屈光度对计算出的比值影响较小,而最终IOL位置有显著影响。这三个基于经验得出的公式都并非普遍准确,但每个公式在某些理论情况下都能够精确预测IOL度数。扬丘列夫等人和莱乔西otti得出的公式在IOL位于后方位置时最为准确,而马库尔等人的公式在IOL位置更靠前时最可靠。

结论

发现最终IOL位置是IOL度数误差的主要决定因素。尽管IOL的A常数是已知的且可能准确,但多种因素仍会影响最终IOL位置并导致不理想的屈光不正。使用这些新公式在近视眼中可获得最佳结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验