Suppr超能文献

恒定频率鸣叫期间的声道运动模式与共振:白喉带鹀

Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow.

作者信息

Riede Tobias, Suthers Roderick A

机构信息

National Center for Voice and Speech, 1101 13th Street, Denver, CO 80204, USA.

出版信息

J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Feb;195(2):183-92. doi: 10.1007/s00359-008-0397-0. Epub 2008 Dec 10.

Abstract

Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal-esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC and the fundamental frequency in the white-throated sparrow (Zonotrichia albicollis) whose song, unlike that of the cardinal, consists of a series of almost constant frequency notes. Cineradiography of singing sparrows shows that the oropharyngeal cavity and cranial end of the esophagus expand abruptly at the start of each note and maintain a relatively constant volume until the end of the note. Computation of the vocal tract transfer function suggests a major resonance of the OEC follows the fundamental frequency, making sound transmission more efficient. The presence of similar prominent song-related vocal tract motor patterns in two Oscine families suggests that the active control of the vocal tract resonance by varying the volume of the OEC may be widespread in songbirds.

摘要

鸟鸣是一种复杂的行为,需要多个运动系统的协调配合。声音在鸣管中产生,然后通过上呼吸道进行修饰。在北美主红雀(Cardinalis cardinalis)中,舌骨骨骼的运动已被证明广泛参与形成口咽 - 食管腔(OEC),该腔对声道传递函数有主要的共振作用。在此我们报告,在白喉带鹀(Zonotrichia albicollis)中,OEC的容积与基频之间存在类似的关系,其歌声与主红雀不同,由一系列几乎恒定频率的音符组成。对唱歌的带鹀进行X线电影摄影显示,口咽腔和食管的颅端在每个音符开始时突然扩张,并在音符结束前保持相对恒定的容积。声道传递函数的计算表明,OEC的主要共振跟随基频,使声音传播更有效率。在两个鸣禽科中存在类似的与鸣叫相关的突出声道运动模式,这表明通过改变OEC的容积来主动控制声道共振可能在鸣禽中广泛存在。

相似文献

1
Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Feb;195(2):183-92. doi: 10.1007/s00359-008-0397-0. Epub 2008 Dec 10.
2
The acoustic effect of vocal tract adjustments in zebra finches.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jan;199(1):57-69. doi: 10.1007/s00359-012-0768-4. Epub 2012 Oct 20.
4
Songbirds tune their vocal tract to the fundamental frequency of their song.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5543-8. doi: 10.1073/pnas.0601262103. Epub 2006 Mar 27.
5
Vocal tract function in birdsong production: experimental manipulation of beak movements.
J Exp Biol. 2000 Jun;203(Pt 12):1845-55. doi: 10.1242/jeb.203.12.1845.
6
Lingual articulation in songbirds.
J Exp Biol. 2016 Feb;219(Pt 4):491-500. doi: 10.1242/jeb.126532. Epub 2015 Dec 18.
8
White-throated sparrows alter songs differentially in response to chorusing anurans and other background noise.
Behav Processes. 2014 Jun;105:28-35. doi: 10.1016/j.beproc.2014.02.015. Epub 2014 Mar 4.
9
Vocal tract articulation in zebra finches.
PLoS One. 2010 Jul 30;5(7):e11923. doi: 10.1371/journal.pone.0011923.
10
Model for vocalization by a bird with distensible vocal cavity and open beak.
J Acoust Soc Am. 2006 Feb;119(2):1005-11. doi: 10.1121/1.2159434.

引用本文的文献

1
Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245138. Epub 2023 Feb 8.
2
Realistic three-dimensional avian vocal tract model demonstrates how shape affects sound filtering ().
J R Soc Interface. 2023 Jan;20(198):20220728. doi: 10.1098/rsif.2022.0728. Epub 2023 Jan 25.
3
Tonality over a broad frequency range is linked to vocal learning in birds.
Proc Biol Sci. 2022 Sep 14;289(1982):20220792. doi: 10.1098/rspb.2022.0792.
4
Adiposity signals predict vocal effort in Alston's singing mice.
Proc Biol Sci. 2018 Apr 25;285(1877). doi: 10.1098/rspb.2018.0090.
5
Focal versus distributed temporal cortex activity for speech sound category assignment.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):E1299-E1308. doi: 10.1073/pnas.1714279115. Epub 2018 Jan 23.
6
Lingual articulation in songbirds.
J Exp Biol. 2016 Feb;219(Pt 4):491-500. doi: 10.1242/jeb.126532. Epub 2015 Dec 18.
8
The acoustic effect of vocal tract adjustments in zebra finches.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jan;199(1):57-69. doi: 10.1007/s00359-012-0768-4. Epub 2012 Oct 20.
9
Reconstruction of physiological instructions from Zebra finch song.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Nov;84(5 Pt 1):051909. doi: 10.1103/PhysRevE.84.051909. Epub 2011 Nov 16.
10
Vocal tract articulation revisited: the case of the monk parakeet.
J Exp Biol. 2012 Jan 1;215(Pt 1):85-92. doi: 10.1242/jeb.064717.

本文引用的文献

1
The application of functional morphology to evolutionary studies.
Trends Ecol Evol. 1996 Mar;11(3):124-9. doi: 10.1016/0169-5347(96)81091-3.
2
Neural substrates of language acquisition.
Annu Rev Neurosci. 2008;31:511-34. doi: 10.1146/annurev.neuro.30.051606.094321.
3
Functional morphology and evolution of aspiration breathing in tetrapods.
Respir Physiol Neurobiol. 2006 Nov;154(1-2):73-88. doi: 10.1016/j.resp.2006.06.003. Epub 2006 Jul 24.
4
Songbirds tune their vocal tract to the fundamental frequency of their song.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5543-8. doi: 10.1073/pnas.0601262103. Epub 2006 Mar 27.
5
Model for vocalization by a bird with distensible vocal cavity and open beak.
J Acoust Soc Am. 2006 Feb;119(2):1005-11. doi: 10.1121/1.2159434.
6
Vocal tract filtering and sound radiation in a songbird.
J Exp Biol. 2005 Jan;208(Pt 2):297-308. doi: 10.1242/jeb.01378.
7
Inflation of the esophagus and vocal tract filtering in ring doves.
J Exp Biol. 2004 Nov;207(Pt 23):4025-36. doi: 10.1242/jeb.01256.
9
Beak gape dynamics during song in the zebra finch.
J Neurobiol. 2004 Jun;59(3):289-303. doi: 10.1002/neu.10327.
10
Vocal mechanics in Darwin's finches: correlation of beak gape and song frequency.
J Exp Biol. 2004 Feb;207(Pt 4):607-19. doi: 10.1242/jeb.00770.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验