Suppr超能文献

加载方向对松质骨中预测屈服区域形态的影响。

Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone.

作者信息

Shi Xiutao, Wang Xiang, Niebur Glen L

机构信息

Tissue Mechanics Laboratory, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Ann Biomed Eng. 2009 Feb;37(2):354-62. doi: 10.1007/s10439-008-9619-4. Epub 2008 Dec 12.

Abstract

While the effects of bone mineral density and architecture in osteoporotic bone have been studied extensively, the micromechanics of yielding and failure have received less attention. However, understanding architectural features associated with failure should provide insight into assessing bone quality. In this study, microstructural finite element models were used to compute regions of tissue level yielding in ten bovine tibial trabecular bone samples. The morphology, number, and mean volume of the yielded regions were quantified for four apparent strains under two loading conditions. For on-axis loading, the mean aspect ratio of the tissue that yielded due to compressive strain increased with increasing apparent strain, expanding along the principal trabecular orientation. This suggests that tissue level yielding progresses along vertical trabeculae when a specimen is loaded on-axis. The number, but not the volume, of the regions yielded due to tensile strain increased with increasing applied load, consistent with relaxation and redistribution of stresses around the yielded regions. When the specimens were compressed perpendicular to the principal axis, the aspect ratio of the yielded regions was close to one, while the number, mean volume, and mean thickness of the yielded regions increased. This indicates that localized high strains consistent with bending rather than axial deformation of struts occur at the tissue level. Overall, the results provide new insight into trabecular bone failure, which is relevant to assessing diagnostic tests for fracture risk or evaluating osteoporosis treatments.

摘要

虽然骨质疏松性骨中骨矿物质密度和结构的影响已得到广泛研究,但屈服和破坏的微观力学受到的关注较少。然而,了解与破坏相关的结构特征应有助于深入评估骨质量。在本研究中,使用微观结构有限元模型来计算十个牛胫骨小梁骨样本中组织水平屈服的区域。在两种加载条件下,对四个表观应变下屈服区域的形态、数量和平均体积进行了量化。对于轴向加载,由于压缩应变而屈服的组织的平均纵横比随着表观应变的增加而增加,沿主要小梁方向扩展。这表明当样本进行轴向加载时,组织水平的屈服沿着垂直小梁发展。由于拉伸应变而屈服的区域的数量而非体积随着施加负荷的增加而增加,这与屈服区域周围应力的松弛和重新分布一致。当样本垂直于主轴压缩时,屈服区域的纵横比接近1,而屈服区域的数量、平均体积和平均厚度增加。这表明在组织水平上发生了与支柱弯曲而非轴向变形一致的局部高应变。总体而言,这些结果为小梁骨破坏提供了新的见解,这与评估骨折风险的诊断测试或评估骨质疏松症治疗方法相关。

相似文献

1
Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone.
Ann Biomed Eng. 2009 Feb;37(2):354-62. doi: 10.1007/s10439-008-9619-4. Epub 2008 Dec 12.
2
Type and orientation of yielded trabeculae during overloading of trabecular bone along orthogonal directions.
J Biomech. 2010 Sep 17;43(13):2460-6. doi: 10.1016/j.jbiomech.2010.05.032. Epub 2010 Jun 15.
3
Biaxial failure behavior of bovine tibial trabecular bone.
J Biomech Eng. 2002 Dec;124(6):699-705. doi: 10.1115/1.1517566.
4
Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone.
Bone. 2010 May;46(5):1260-6. doi: 10.1016/j.bone.2010.02.005. Epub 2010 Feb 10.
5
Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
J Biomech. 2004 Sep;37(9):1413-20. doi: 10.1016/j.jbiomech.2003.12.037.
6
Heterogeneity of yield strain in low-density versus high-density human trabecular bone.
J Biomech. 2009 Sep 18;42(13):2165-70. doi: 10.1016/j.jbiomech.2009.05.023. Epub 2009 Aug 22.
7
Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions.
J Biomech. 2001 May;34(5):699-706. doi: 10.1016/s0021-9290(01)00003-3.
9
Differing trabecular bone architecture in dinosaurs and mammals contribute to stiffness and limits on bone strain.
PLoS One. 2020 Aug 19;15(8):e0237042. doi: 10.1371/journal.pone.0237042. eCollection 2020.
10
Age variations in the properties of human tibial trabecular bone and cartilage.
Acta Orthop Scand Suppl. 2000 Jun;292:1-45. doi: 10.1080/000164700753749791.

引用本文的文献

1
The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults.
Materials (Basel). 2021 Oct 26;14(21):6409. doi: 10.3390/ma14216409.
2
3
The roles of architecture and estrogen depletion in microdamage risk in trabecular bone.
J Biomech. 2016 Oct 3;49(14):3223-3229. doi: 10.1016/j.jbiomech.2016.08.009. Epub 2016 Aug 9.
4
The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.
Comput Methods Biomech Biomed Engin. 2016;19(5):465-73. doi: 10.1080/10255842.2015.1041022. Epub 2015 May 11.
5
Biomechanics and mechanobiology of trabecular bone: a review.
J Biomech Eng. 2015 Jan;137(1):0108021-01080215. doi: 10.1115/1.4029176.
7
Morphology analysis of vertebral trabecular bone under dynamic loading based on multi-scale theory.
Med Biol Eng Comput. 2012 Oct;50(10):1091-103. doi: 10.1007/s11517-012-0951-3. Epub 2012 Sep 5.
8
Trabecular architecture and vertebral fragility in osteoporosis.
Curr Osteoporos Rep. 2012 Jun;10(2):132-40. doi: 10.1007/s11914-012-0097-0.
9
Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation.
Med Biol Eng Comput. 2011 Dec;49(12):1393-403. doi: 10.1007/s11517-011-0833-0. Epub 2011 Sep 24.
10
Shear strength and toughness of trabecular bone are more sensitive to density than damage.
J Biomech. 2011 Nov 10;44(16):2747-54. doi: 10.1016/j.jbiomech.2011.09.002. Epub 2011 Sep 25.

本文引用的文献

1
A symmetry invariant formulation of the relationship between the elasticity tensor and the fabric tensor.
Mech Mater. 2012 Nov;54:70-83. doi: 10.1016/j.mechmat.2012.07.004. Epub 2012 Jul 15.
3
Influence of orthogonal overload on human vertebral trabecular bone mechanical properties.
J Bone Miner Res. 2007 Nov;22(11):1690-9. doi: 10.1359/jbmr.070706.
4
Detection of trabecular bone microdamage by micro-computed tomography.
J Biomech. 2007;40(15):3397-403. doi: 10.1016/j.jbiomech.2007.05.009. Epub 2007 Jun 22.
5
A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone.
Bone. 2007 May;40(5):1259-64. doi: 10.1016/j.bone.2006.10.031. Epub 2007 Feb 27.
6
Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging.
J Magn Reson Imaging. 2007 Feb;25(2):390-409. doi: 10.1002/jmri.20807.
9
Microdamage propagation in trabecular bone due to changes in loading mode.
J Biomech. 2006;39(5):781-90. doi: 10.1016/j.jbiomech.2005.02.007.
10
Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
Eur J Morphol. 2005 Feb-Apr;42(1-2):61-70. doi: 10.1080/09243860500095570.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验