Suppr超能文献

肿瘤相关蛋白水解动力学的成像与定量分析

Imaging and quantifying the dynamics of tumor-associated proteolysis.

作者信息

Sameni Mansoureh, Cavallo-Medved Dora, Dosescu Julie, Jedeszko Christopher, Moin Kamiar, Mullins Stefanie R, Olive Mary B, Rudy Deborah, Sloane Bonnie F

机构信息

Department of Pharmacology, School of Medicine, Wayne State University, 540 E. Canfield, Detroit, MI 48201, USA.

出版信息

Clin Exp Metastasis. 2009;26(4):299-309. doi: 10.1007/s10585-008-9218-7. Epub 2008 Dec 13.

Abstract

The roles of proteases in cancer are dynamic. Furthermore, the roles or functions of any one protease may differ from one stage of cancer to another. Proteases from tumor-associated cells (e.g., fibroblasts, inflammatory cells, endothelial cells) as well as from tumor cells make important contributions to 'tumor proteolysis'. Many tumors exhibit increases in expression of proteases at the level of transcripts and protein; however, whether those proteases play causal roles in malignant progression is known for only a handful of proteases. What the critical substrate or substrates that are cleaved in vivo by any given protease is also known for only a few proteases. Therefore, the recent development of techniques and reagents for live cell imaging of protease activity, in conjunction with informed knowledge of critical natural substrates, should help to define protease functions. Here we describe live cell assays for imaging proteolysis, protocols for quantifying proteolysis and the use of such assays to follow the dynamics of proteolysis by tumor cells alone and tumor cells interacting with other cells found in the tumor microenvironment. In addition, we describe an in vitro model that recapitulates the architecture of the mammary gland, a model designed to determine the effects of dynamic interactions with the surrounding microenvironment on 'tumor proteolysis' and the respective contributions of various cell types to 'tumor proteolysis'. The assays and models described here could serve as screening platforms for the identification of proteolytic pathways that are potential therapeutic targets and for further development of technologies and imaging probes for in vivo use.

摘要

蛋白酶在癌症中的作用是动态变化的。此外,任何一种蛋白酶的作用或功能在癌症的不同阶段可能有所不同。来自肿瘤相关细胞(如成纤维细胞、炎症细胞、内皮细胞)以及肿瘤细胞的蛋白酶对“肿瘤蛋白水解”起着重要作用。许多肿瘤在转录本和蛋白质水平上都表现出蛋白酶表达的增加;然而,只有少数几种蛋白酶被证实这些蛋白酶在恶性进展中起因果作用。对于任何一种特定蛋白酶在体内切割的关键底物是什么,也只有少数几种蛋白酶有相关研究。因此,蛋白酶活性活细胞成像技术和试剂的最新发展,结合对关键天然底物的深入了解,应有助于确定蛋白酶的功能。在这里,我们描述了用于蛋白水解成像的活细胞测定法、定量蛋白水解的方案,以及使用这些测定法来跟踪仅肿瘤细胞以及肿瘤细胞与肿瘤微环境中其他细胞相互作用时蛋白水解的动态变化。此外,我们描述了一种体外模型,该模型概括了乳腺的结构,旨在确定与周围微环境的动态相互作用对“肿瘤蛋白水解”的影响以及各种细胞类型对“肿瘤蛋白水解”的各自贡献。这里描述的测定法和模型可作为筛选平台,用于识别潜在治疗靶点的蛋白水解途径,并进一步开发体内使用的技术和成像探针。

相似文献

1
Imaging and quantifying the dynamics of tumor-associated proteolysis.
Clin Exp Metastasis. 2009;26(4):299-309. doi: 10.1007/s10585-008-9218-7. Epub 2008 Dec 13.
2
Functional imaging of tumor proteolysis.
Annu Rev Pharmacol Toxicol. 2006;46:301-15. doi: 10.1146/annurev.pharmtox.45.120403.095853.
3
Pathomimetic cancer avatars for live-cell imaging of protease activity.
Biochimie. 2016 Mar;122:68-76. doi: 10.1016/j.biochi.2015.09.015. Epub 2015 Sep 12.
4
Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis.
J Biol Chem. 2024 Jun;300(6):107347. doi: 10.1016/j.jbc.2024.107347. Epub 2024 May 6.
5
The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy.
Int J Mol Sci. 2021 Mar 3;22(5):2514. doi: 10.3390/ijms22052514.
6
Live-Cell Imaging of Protease Activity: Assays to Screen Therapeutic Approaches.
Methods Mol Biol. 2017;1574:215-225. doi: 10.1007/978-1-4939-6850-3_16.
7
Circulating Peptidome and Tumor-Resident Proteolysis.
Enzymes. 2017;42:1-25. doi: 10.1016/bs.enz.2017.08.001. Epub 2017 Oct 10.
8
Protease proteomics: revealing protease in vivo functions using systems biology approaches.
Mol Aspects Med. 2008 Oct;29(5):339-58. doi: 10.1016/j.mam.2008.04.003. Epub 2008 May 1.
9
Live-cell imaging of tumor proteolysis: impact of cellular and non-cellular microenvironment.
Biochim Biophys Acta. 2012 Jan;1824(1):123-32. doi: 10.1016/j.bbapap.2011.07.025. Epub 2011 Aug 5.
10
3D/4D functional imaging of tumor-associated proteolysis: impact of microenvironment.
Methods Enzymol. 2012;506:175-94. doi: 10.1016/B978-0-12-391856-7.00034-2.

引用本文的文献

3
Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening.
Exp Neurol. 2018 Jan;299(Pt B):289-298. doi: 10.1016/j.expneurol.2017.10.012. Epub 2017 Oct 19.
5
Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer.
Oncotarget. 2016 Sep 6;7(36):58244-58260. doi: 10.18632/oncotarget.11309.
6
Imaging Sites of Inhibition of Proteolysis in Pathomimetic Human Breast Cancer Cultures by Light-Activated Ruthenium Compound.
PLoS One. 2015 Nov 12;10(11):e0142527. doi: 10.1371/journal.pone.0142527. eCollection 2015.
7
Pathomimetic cancer avatars for live-cell imaging of protease activity.
Biochimie. 2016 Mar;122:68-76. doi: 10.1016/j.biochi.2015.09.015. Epub 2015 Sep 12.
8
Developments in preclinical cancer imaging: innovating the discovery of therapeutics.
Nat Rev Cancer. 2014 May;14(5):314-28. doi: 10.1038/nrc3724. Epub 2014 Apr 17.
9
Metabotropic glutamate receptor-1 contributes to progression in triple negative breast cancer.
PLoS One. 2014 Jan 3;9(1):e81126. doi: 10.1371/journal.pone.0081126. eCollection 2014.

本文引用的文献

1
2
Visualizing protease activity in living cells: from two dimensions to four dimensions.
Curr Protoc Cell Biol. 2008 Jun;Chapter 4:Unit 4.20. doi: 10.1002/0471143030.cb0420s39.
3
Invadopodia: at the cutting edge of tumour invasion.
J Clin Neurosci. 2008 Jul;15(7):725-37. doi: 10.1016/j.jocn.2008.03.003. Epub 2008 May 12.
5
Mechanisms controlling human endothelial lumen formation and tube assembly in three-dimensional extracellular matrices.
Birth Defects Res C Embryo Today. 2007 Dec;81(4):270-85. doi: 10.1002/bdrc.20107.
6
Activity-based protein profiling for the functional annotation of enzymes.
Nat Methods. 2007 Oct;4(10):822-7. doi: 10.1038/nmeth1092.
7
Emerging roles of proteases in tumour suppression.
Nat Rev Cancer. 2007 Oct;7(10):800-8. doi: 10.1038/nrc2228.
8
Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion.
Nat Cell Biol. 2007 Aug;9(8):893-904. doi: 10.1038/ncb1616. Epub 2007 Jul 8.
9
Identification of proteolytic cleavage sites by quantitative proteomics.
J Proteome Res. 2007 Jul;6(7):2850-8. doi: 10.1021/pr0701052. Epub 2007 Jun 5.
10
Stromal induction of breast cancer: inflammation and invasion.
Rev Endocr Metab Disord. 2007 Sep;8(3):279-87. doi: 10.1007/s11154-007-9037-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验