Suppr超能文献

使用机器人脚踝外骨骼进行斜坡行走的力学与能量学

Mechanics and energetics of incline walking with robotic ankle exoskeletons.

作者信息

Sawicki Gregory S, Ferris Daniel P

机构信息

Human Neuromechanics Laboratory, University of Michigan-Ann Arbor, Ann Arbor, MI 48109, USA.

出版信息

J Exp Biol. 2009 Jan;212(Pt 1):32-41. doi: 10.1242/jeb.017277.

Abstract

We examined healthy human subjects wearing robotic ankle exoskeletons to study the metabolic cost of ankle muscle-tendon work during uphill walking. The exoskeletons were powered by artificial pneumatic muscles and controlled by the user's soleus electromyography. We hypothesized that as the demand for net positive external mechanical work increased with surface gradient, the positive work delivered by ankle exoskeletons would produce greater reductions in users' metabolic cost. Nine human subjects walked at 1.25 m s(-1) on gradients of 0%, 5%, 10% and 15%. We compared rates of O(2) consumption and CO(2) production, exoskeleton mechanics, joint kinematics, and surface electromyography between unpowered and powered exoskeleton conditions. On steeper inclines, ankle exoskeletons delivered more average positive mechanical power (P<0.0001; +0.37+/-0.03 W kg(-1) at 15% grade and +0.23+/-0.02 W kg(-1) at 0% grade) and reduced subjects' net metabolic power by more (P<0.0001; -0.98+/-0.12 W kg(-1) at 15% grade and -0.45+/-0.07 W kg(-1) at 0% grade). Soleus muscle activity was reduced by 16-25% when wearing powered exoskeletons on all surface gradients (P<0.0008). The ;apparent efficiency' of ankle muscle-tendon mechanical work decreased from 0.53 on level ground to 0.38 on 15% grade. This suggests a decreased contribution from previously stored Achilles' tendon elastic energy and an increased contribution from actively shortening ankle plantar flexor muscle fibers to ankle muscle-tendon positive work during walking on steep uphill inclines. Although exoskeletons delivered 61% more mechanical work at the ankle up a 15% grade compared with level walking, relative reductions in net metabolic power were similar across surface gradients (10-13%). These results suggest a shift in the relative distribution of mechanical power output to more proximal (knee and hip) joints during inclined walking.

摘要

我们对佩戴机器人脚踝外骨骼的健康人体受试者进行了研究,以探究上坡行走过程中脚踝肌肉 - 肌腱做功的代谢成本。外骨骼由人工气动肌肉提供动力,并由使用者的比目鱼肌肌电图进行控制。我们假设,随着表面坡度增加,对净正外部机械功的需求增加,脚踝外骨骼提供的正功将使使用者的代谢成本降低得更多。九名人体受试者在坡度为0%、5%、10%和15%的路面上以1.25 m s⁻¹的速度行走。我们比较了无动力和有动力外骨骼条件下的耗氧率和二氧化碳产生率、外骨骼力学、关节运动学以及表面肌电图。在更陡的斜坡上,脚踝外骨骼提供了更多的平均正机械功率(P<0.0001;在15%坡度时为 +0.37±0.03 W kg⁻¹,在0%坡度时为 +0.23±0.02 W kg⁻¹),并使受试者的净代谢功率降低得更多(P<0.0001;在15%坡度时为 -0.98±0.12 W kg⁻¹,在0%坡度时为 -0.45±0.07 W kg⁻¹)。在所有表面坡度上佩戴有动力外骨骼时,比目鱼肌活动减少了16 - 25%(P<0.0008)。脚踝肌肉 - 肌腱机械功的“表观效率”从水平地面的0.53降至15%坡度时的0.38。这表明在陡峭上坡行走过程中,先前储存的跟腱弹性能量的贡献减少,而主动缩短的脚踝跖屈肌纤维对脚踝肌肉 - 肌腱正功的贡献增加。尽管与水平行走相比,外骨骼在15%坡度的脚踝处提供的机械功多61%,但净代谢功率的相对降低在不同表面坡度上相似(10 - 13%)。这些结果表明,在倾斜行走过程中,机械功率输出的相对分布向更靠近近端的(膝盖和臀部)关节转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验